Advertisement

Cytology and Genetics

, Volume 50, Issue 5, pp 285–292 | Cite as

Anatomical abnormalities of the intertribal cybrid between Brassica napus and Lesquerella fendleri chloroplasts

  • N. V. NuzhynaEmail author
  • I. O. Nitovska
  • A. V. Golubenko
  • B. V. Morgun
  • M. V. Kuchuk
Article

Abstract

The anatomical research of the vegetative organs of the cytoplasmatic hybrid grown in vitro and containing the Brassica napus nucleus and the Lesquerella fendleri chloroplasts was carried out and compared to the parental forms. It was found that the anatomical structure of the cybrid is similar to rapeseed. Anomalous changes in the epithelial, parenchymal, and connective tissue of the leaf, stalk, stem, and root of the cybrid were detected. The appearance of the anatomical defects can be explained by nuclear-cytoplasmatic incompatibility, which is the cause of low adaptability of the cybrid to in vivo conditions and takes place due to alien chloroplast gene expression in the remote species.

Keywords

cytoplasmatic hybrid Brassica napus Lesquerella fendleri anatomy of vegetative organs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poulsen, G.B., Genetic transformation of Brassica, Plant Breed., 1996, vol. 115, no. 4, pp. 209–225.CrossRefGoogle Scholar
  2. 2.
    Wang, W.C., Menon, G., and Hansen, G., Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants, Plant Cell Rep., 2003, vol. 22, no. 4, pp. 274–281.CrossRefPubMedGoogle Scholar
  3. 3.
    Cardoza, V. and Stewart, C.N., Jr., Agrobacteriummediated transformation of canola, in Transgenic Crops of the World—Essential Protocols, Curtis, I.S., Ed., Kluwer Acad. Publ., 2004, pp. 379–387.Google Scholar
  4. 4.
    Slyvets, M. and Sakhno, L., Human interferon alphs 2b positively affects plant growth in both aseptic nonstressed and water deficit conditions, Int. J. Biosci. Nanosci., 2014, vol. 1, no. 5, pp. 104–118.Google Scholar
  5. 5.
    Scott, S.E. and Wilkinson, M.J., Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa, Nat. Biotechnol., 1999, vol. 17, no. 4, pp. 390–392.CrossRefPubMedGoogle Scholar
  6. 6.
    Hou, B.K., Zhou, Y.H., Wan, L.H., Zhang, Z.L., Shen, G.F., Chen, Z.H., and Hu, Z.M., Chloroplast transformation in oilseed rape, Transgenic Res., 2003, vol. 12, no. 1, pp. 111–114.CrossRefPubMedGoogle Scholar
  7. 7.
    Schneider, A., Stelljes, C., Adams, C, Kirchner, S., Burkhard, G., Jarzombski, S., Broer, I., Horn, P., Elsayed, A., Hagl, P., Leister, D., and Koop, H.U., Low frequency paternal transmission of plastid genes in Brassicaceae, Transgenic Res., 2015, vol. 24, no. 2, pp. 267–277.CrossRefPubMedGoogle Scholar
  8. 8.
    Bansal, K. and Saha, D., Chloroplast genomics and genetic engineering for crop improvement, Agric. Res., 2012, vol. 1, no. 1, pp. 53–66.CrossRefGoogle Scholar
  9. 9.
    Sytnik, E., Komarnitsky, I., Gleva, Yu., and Kuchuk, N., Transfer of transformed chloroplasts from Nicotinala tabacum to the Lycium barbarum plants, Cell Biol. Int., 2005, vol. 29, no. 1, pp. 71–75.CrossRefPubMedGoogle Scholar
  10. 10.
    Kuchuk, N., Sytnyk, K., Vasylenko, M., Shakhovsky, A., Komarnytsky, I., Kushnir, S., and Gleba, Yu., Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts, Theor. Appl. Genet., 2006, vol. 113, no. 3, pp. 519–527.CrossRefPubMedGoogle Scholar
  11. 11.
    Nitovska, I.O., Shakhovski, A.M., Cherep, M.N., Gorodenska, M.M., and Kuchuk, N.V., Creation of cybrid transplasmonic plants of Brassica napus with Lesquerella fendleri chloroplasts, Cytol. Genet., 2006, vol. 40, no. 4, pp. 191–198.Google Scholar
  12. 12.
    Kushnir, S., Babiychuk, E., Bannikova, M., Momot, V., Komarnitsky, I., Cherep, N. and Gleba, Yu., Nucleocytoplasmic incompatibility in cybrid plants possessing an Atropa genome and a Nicotiana plastome, Mol. Gen. Genet., 1991, vol. 225, no. 2, pp. 225–230.CrossRefPubMedGoogle Scholar
  13. 13.
    Zubko, M.K., Zubko, E.I., Ruban, A.V., Adler, K., Mock, H.P., Misera, S., Gleba, Yu.Yu., Grimm, B., Extensive developmental and metabolic alterations in cybrids Nicotiana tabacum (+ Hyoscyamus niger) are caused by complex nucleo-cytoplasmic incompatibility, Plant J., 2001, vol. 25, no. 6, pp. 627–639.CrossRefPubMedGoogle Scholar
  14. 14.
    Sychjova, I.M., Triboush, S.O., Danilenko, N.G., and Davydenko, O.G., The collection of allo- and isoplasmic barley lines with PDRF-studied mitochondrial DNA, Barley Genet. Newslett., 1998, vol. 28, pp. 9–11.Google Scholar
  15. 15.
    Tsunewaki, K., Wang, G.Z., and Matsuoka, Y., Plasmon analysis of Triticum (wheat) and Aegilops, 1. Production of alloplasmic common wheats and their fertilities, Genes Genet. Syst., 1996, vol. 71, no. 5, pp. 293–311.CrossRefPubMedGoogle Scholar
  16. 16.
    Gleba, Yu.Yu. and Sytnik, K.M., Protoplast Fusion, Berlin: Springer, 1984.CrossRefGoogle Scholar
  17. 17.
    Svab Z., Hajdukiewicz, P., and Maliga, P., Stable transformation of plastids in higher plants, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, no. 21, pp. 8526–8530.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Skarjinskaia, M., Svab, Z., and Maliga, P., Plastid transformation in Lesquerella fendleri, and oilseed Brassicacea, Transgenic Res., 2003, vol. 12, no. 1, pp. 115–122.CrossRefPubMedGoogle Scholar
  19. 19.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, pp. 473–497.CrossRefGoogle Scholar
  20. 20.
    Romeis—Mikroskopische Technik, Munchen, 1989.Google Scholar
  21. 21.
    Zarinkamar, F., Stomatal observations in dicotyledons, Pak., J. Biol. Sci., 2007, vol. 10, no. 2, pp. 199–219.Google Scholar
  22. 22.
    Skarzhinskaya, M., Landgren, M., and Glimelius, K., Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats, Theor. Appl. Genet., 1996, vol. 93, no. 8, pp. 1242–1250.CrossRefPubMedGoogle Scholar
  23. 23.
    Tsunewaki, K., Genome-plasmon interactions in wheat, Japan J. Genet., 1993, vol. 68, no. 1, pp. 1–34.CrossRefGoogle Scholar
  24. 24.
    Jones, P., Keane, E.M., and Osborne, B.A., Effects of alien cytoplasmic variation on carbon assimilation and productivity in wheat, J. Exp. Bot., 1998, vol. 49, no. 326, pp. 1519–1528.CrossRefGoogle Scholar
  25. 25.
    Goloenko, I.M., Lukhanina, N.V., Shimkevich, A.M., Aksyonova, E.A., Danilenko, N.G., and Davydenko, O.G., The productivity characteristics of substituted barley lines with marked chloroplast and mitochondrial genomes, Cell. Mol. Biol. Lett., 2002, vol. 7, pp. 483–491.PubMedGoogle Scholar
  26. 26.
    Ratushnyak, Ya.I., Kochevenko, A.S., Cherep, N.N., Zavgorodnyaya, A.V., Latypov, S.A., and Gleba, Yu.Yu., Alloplasmatic incompatibility in cybrid plants possessing a Lycopersicon esculentum Mill. genome and Lycopersicon peruvianum var. dentatum Dun. Plasmagenes, Russ. J. Genet., 1995, vol. 31, no. 5, pp. 565–571.Google Scholar
  27. 27.
    Zubko, M.K., Zubko, E.I., Patskovsky, Y.V., Khvedynich, O.A., Fisahn, J., Gleba, Yu.Yu., and Schieder, O., Novel “homeotic” CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia, J. Exp. Bot., 1996, vol. 47, no. 8, pp. 1101–1110.CrossRefGoogle Scholar
  28. 28.
    Evans, J.R., The relationship between carbon-dioxidelimited photosynthetic rate and ribulose-1,5-bisphosphate- carboxylase content in two nuclear-cytoplasm substitution lines of wheat, and the coordination of ribulose- bisphosphate-carboxylation and electron-transport capacities, Planta, 1986, vol. 167, no. 3, pp. 351–358.CrossRefPubMedGoogle Scholar
  29. 29.
    Kushnir, S.G., Shlumukov, L.R., Pogrebnyak, N.J., Berger, S., and Gleba, Yu., Functional cybrid plants possessing a Nicotiana genome and an Atropa plastome, Mol. Gen. Genet., 1987, vol. 209, no. 1, pp. 159–163.CrossRefPubMedGoogle Scholar
  30. 30.
    Nakamura, C., Kasai, K., Kubota, Y., Yamagami, C., Suzuki, T., and Mori, N., Cytoplasmic diversity in alloplasmic common wheat with cytoplasms of Triticum and Aegilops revealed by photosynthetic and respiratory characteristics, Japan J. Genet., 1991, vol. 66, no. 4, pp. 471–483.CrossRefGoogle Scholar
  31. 31.
    Babiychuk, E., Schantz, R., Cherep, N., Weil, J.H., Gleba, Yu., and Kushnir, S., Alterations in chlorophyll a/b binding proteins in Solanaceae cybrids, Mol. Gen. Genet., 1995, vol. 249, no. 6, pp. 648–654.CrossRefPubMedGoogle Scholar
  32. 32.
    Kochevenko, A.S., Ratushnyak, Ya.I., Korneev, D.Yu., Stasik, O.O., Shevchenko, V.V., Kochubei, S.M., and Gleba, Yu.Yu., Photosynthetic apparatus in a cytoplasmic hybrid of cultured tomato carrying the nucleocytoplasmic incompatibility trait, Russ. J. Plant Physiol., 1999, vol. 46, no. 4, pp. 474–481.Google Scholar
  33. 33.
    Keane, E.M. and Jones, P.W., Effects of alien cytoplasm substitution on the response of wheat cultivars to Septoria nodorum, Ann. Appl. Biol., 1990, vol. 117, no. 2, pp. 299–312.CrossRefGoogle Scholar
  34. 34.
    Goloenko, I.M. and Davydenko, O.G., Disturbance of Mendelian segregation. Effects of cytoplasmic organelle genomes, Tsitol. Genet., 2005, vol. 39, no. 1, pp. 71–81.PubMedGoogle Scholar
  35. 35.
    Konoshita, T. and Kihara, H., NC-heterosis expressed in the nuclear hybrids of common wheat having cytoplasm of Aegilops squarrosa, Seiken Ziho, 1982, vol. 30, pp. 1–8.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • N. V. Nuzhyna
    • 1
    Email author
  • I. O. Nitovska
    • 2
  • A. V. Golubenko
    • 1
    • 2
  • B. V. Morgun
    • 2
  • M. V. Kuchuk
    • 2
  1. 1.Institute of BiologyShevchenko National University of KyivKyivUkraine
  2. 2.Institute of Cell Biology and Genetic EngineeringNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations