Cytology and Genetics

, Volume 50, Issue 5, pp 352–356 | Cite as

Colocalization of USP1 and РН domain of Bcr-Abl oncoprotein in terms of chronic myeloid leukemia cell rearrangements

  • S. V. AntonenkoEmail author
  • D. S. Gurianov
  • G. D. Telegeev


The development of chronic myeloid leukemia (CML) is the result of a reciprocal translocation between chromosomes 9 and 22 due to the emergence of Philadelphia chromosome. The product of this mutation is a hybrid oncoprotein Bcr-Abl. According to the results of mass spectrometric analysis, USP1 protein was identified as a potential candidate for interaction with the PH domain Bcr-Abl oncoprotein. Due to the deubiquitination properties, USP1 protein can prevent proteasomal degradation of Bcr-Abl oncoprotein in a cell and, consequently, contribute to its accumulation, and the progression of the disease. In this work, creating the genetic constructs, we detected the USP1 protein localization in the cell. Also, a nuclear colocalization of USP1 protein with PH domain of Bcr-Abl oncoprotein in HEK293T cells was shown. The results are important for understanding the implications of the Philadelphia chromosome emergence, and the development of new methods for CML treatment, since the recent techniques are not always effective due to the emergence of numerous mutations that cause drug resistance and relapse of the disease.


сhronic myeloid leukemia Bcr-Abl protein PH domain USP1 protein deubiquitination USP1 protein localization colocalization USP1 protein and PH domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fausel, C., Targeted chronic myeloid leukemia therapy: seeking a cure, Manag. Care Pharm., 2007, vol. 13, no. 8, pp. 8–12.CrossRefGoogle Scholar
  2. 2.
    Telegeev, G.D., Dybkov, M.V., Dubrovska, A.N., Miroshnichenko, D.A., Tyutyunnykova, A.P., and Maliuta, S.S., Development of molecular oncohematology in Ukraine, Biopolym. Cell, 2013, vol. 29, no. 4, pp. 277–282.CrossRefGoogle Scholar
  3. 3.
    Zhao, X., Ghaffari, S., Lodish, H., Malashkevich, V.N., and Kim, P.S., Structure of the Bcr-Abl oncoprotein oligomerization domain, Nat. Struct. Biol., 2002, vol. 9, no. 2, pp. 117–120.PubMedGoogle Scholar
  4. 4.
    Järas, M., Johnels, P., Agerstam, H., Lassen, C., Rissler, M., Edén, P., Cammenga, J., Olofsson, T., Bjerrum, O.W., Richter, J., Fan, X., and Fioretos, T., Expression of P190 and P210 BCR/ABL1 in normal human CD34(+) cells induces similar gene expression profiles and results in a STAT5-dependent expansion of the erythroid lineage, Exp. Hematol., 2009, vol. 37, no. 3, pp. 367–375.CrossRefPubMedGoogle Scholar
  5. 5.
    Colicelli, J., ABL tyrosine kinases: evolution of function, regulation, and specificity, Sci. Signal., 2010, vol. 3, no. 139, re6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Telegeev, G.D., Dubrovska, A.N., Dybkov, M.V., and Maliuta, S.S., Influence of BCR-ABL fusion proteins on the course of Ph leukemias, Acta Biochim. Pol., 2004, vol. 51, no. 3, pp. 845–849.PubMedGoogle Scholar
  7. 7.
    Telegeev, G.D., Dubrovska, A.N., Nadgorna, V.A., Dybkov M.V., Zavelevich, M.P., Maliuta, S.S., and Gluzman, D.F., Immunocytochemical study of Bcr and Bcr-Abl localization in K562 cells, Exp. Oncol., 2010, vol. 32, no. 2, pp. 81–83.PubMedGoogle Scholar
  8. 8.
    Miroshnychenko, D., Dubrovska, A., Maliuta, S., Telegeev, G., and Aspenström, P., Novel role of pleckstrin homology domain of the Bcr-Abl protein: analysis of protein–protein and protein–lipid interactions, Exp. Cell Res., 2010, vol. 316, no. 4, pp. 530–542.CrossRefPubMedGoogle Scholar
  9. 9.
    Cotto-Rios, X.M., Jones, M.J., and Huang, T.T., Insights into phosphorylation-dependent mechanisms regulating USP1 protein stability during the cell cycle, Cell Cycle, 2011, vol. 10, no. 23, pp. 4009–4016.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wilkinson, K.D., Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome, Semin. Cell Dev. Biol., 2000, vol. 11, no. 3, pp. 141–148.CrossRefPubMedGoogle Scholar
  11. 11.
    Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D., Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes, Annu. Rev. Biochem., 2009, no. 78, pp. 363–397.CrossRefPubMedGoogle Scholar
  12. 12.
    Jadhav, T. and Wooten, M., Defining an embedded code for protein ubiquitination, J. Proteom. Bioinform., 2009, vol. 2, pp. 316–333.CrossRefGoogle Scholar
  13. 13.
    Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K., and Bernards, R., A genomic and functional inventory of deubiquitinating enzymes, Cell, 2005, vol. 123, no. 5, pp. 773–786.CrossRefPubMedGoogle Scholar
  14. 14.
    Nijman, S.M.B., Huang, T.T., Diras, A.M., Brummelkamp, T.R., Kerkhoven, R.M., D’Andrea, A.D., and Bernards, R., The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway, Mol. Cell, 2005, vol. 17, no. 3, pp. 331–339.CrossRefPubMedGoogle Scholar
  15. 15.
    Cotto-Rios, X.M., Jones, M.J., Busino, L., Pagano, M., and Huang, T.T., APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage, J. Cell Biol., 2011, vol. 194, no. 2, pp. 177–186.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liang, Q., Dexheimer, T.S., Zhang, P., Rosenthal, A.S., Villamil, M.A., You, C., Zhang, Q., Chen, J., Ott, C.A., Sun, H., Luci, D.K., Yuan, B., Simeonov, A., Jadhav, A., Xiao, H., Wang, Y., Maloney, D.J., and Zhuang, Z., A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses, Nat. Chem. Biol., 2014, vol. 10, no. 4, pp. 298–304.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Williams, S.A., Maecker, H.L., French, D.M., Liu, J., Gregg, A., Silverstein, L.B., Cao, T.C., Carano, R.A., and Dixit, V.M., USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteocarcoma, Cell, 2011, vol. 146, no. 6, pp. 918–930.CrossRefPubMedGoogle Scholar
  18. 18.
    Kumar, A., Agarwal, S., Heyman, J.A., Matson, S., Heidtman, M., Piccirillo, S., Umansky, L., Drawid, A., Jansen, R., Liu, Y., Cheung, K.H., Miller, P., Gerstein, M., Roeder, G.S., and Shyder, M., Subcellular localization of the yeast proteome, Genes Dev., 2002, vol. 16, no. 6, pp. 707–719.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fraile, J.M., Quesada, V., Rodriguez, D., Freije, J.M., and Lopez-Otin, C., Deubiquitinases in cancer: new functions and therapeutic options, Oncogene, 2012, vol. 31, no. 19, pp. 2373–2388.CrossRefPubMedGoogle Scholar
  20. 20.
    Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucete-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., and Vidal, M., Towards a proteome- scale map of the human protein0protein interaction network, Nature, 2005, vol. 437, no. 7062, pp. 1173–1178.CrossRefPubMedGoogle Scholar
  21. 21.
    Chin, C.J., Wong, S., Davis, M.J., and Ragan, M.A., Protein-protein interaction as a predictor of subcellular location, BMC Syst. Biol., 2009, no. 3, pp. 28–31.CrossRefGoogle Scholar
  22. 22.
    Jiang, J.Q. and Maoying, W., Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study, BMC Bioinform., 2012, no. 13, pp. 10–20.CrossRefGoogle Scholar
  23. 23.
    Dunn, K.W., Kamocka, M.M., and McDonald, J.H., A practical guide to evaluating colocalization in biological microscopy, Am. J. Cell Physiol., 2011, vol. 300, no. 4, pp. 723–743.CrossRefGoogle Scholar
  24. 24.
    Zinchuk, V., Zinchuk, O., and Okada, T., Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: Pushing pixels to explore biological phenomena, Acta Histochem. Cytochem., 2007, vol. 49, no. 4, pp. 101–111.CrossRefGoogle Scholar
  25. 25.
    McDonald, J.H. and Dunn, K.W., Statistical tests for measures of colocalization in biological microscopy, J. Microsc., 2013, vo. 252, no. 3, pp. 295–302.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carcia-Santisteban, I., Zorroza, K., and Rodriguez, J.A., Two nuclear localization signals in USP1 mediate nuclear import of the USP1/UAF1 complex, PloS One, 2012, vol. 7, no. 6, e3870.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • S. V. Antonenko
    • 1
    Email author
  • D. S. Gurianov
    • 1
  • G. D. Telegeev
    • 1
  1. 1.Institute of Molecular Biology and GeneticsNAS of UkraineKyivUkraine

Personalised recommendations