Advertisement

Cytology and Genetics

, Volume 50, Issue 3, pp 187–195 | Cite as

Reduction of radiation-induced nitrative stress in leucocytes and kidney cells of rats upon administration of polyphenolic complex concentrates from red wine

  • M. SabadashkaEmail author
  • N. Sybirna
Article

Abstract

The research has shown that exposure to ionizing radiation at the dose of 30 cGy leads to the activation of NO-synthase way of nitrogen oxide synthesis, as well as to the accumulation of its stable metabolites and 3'-nitrotyrosine modified proteins in rat peripheral blood leucocytes and the renal cortical layer. NO-synthase activity was preserved at the control value through the consumption of red wine naturalpolyphenolic complex concentrates by the irradiated animals. The content of proteins modified by tyrosine nitration decreased in the early period of post-radiation exposure due to the influence of the investigated concentrate. Thus the ability of red wine natural polyphenolic complex concentrates to prevent adverse changes in L-arginine/NO system and, therefore, inhibit the development of nitrative stress induced by low doses of ionizing radiation has been proved experimentally.

Keywords

3'-nitrotyrosine modified proteins NO stable metabolites NO-synthase polyphenols X-rays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mughal, S.K., Myazin, A.E., Zhavoronkov, L.P., Rubanovich, A.V., and Dubrova, Y.E., The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection, PLoS One, 2012, vol. 7, no. 7, p. e41300.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Snijders, A.M., Marchetti, F., Bhatnagar, S., Duru, N., Han, J., Hu, Z., Mao, J., Gray, J.W., and Wyrobek, A.J., Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility, PLoS One, 2012, vol. 7, no. 10, p. e45394.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee, J., Giordano, S., and Zhang, J., Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling, Biochem. J., 2012, vol. 441, no. 2, pp. 523–540.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alderton, W.K., Cooper, C.E., and Knowles, R.G., Nitric oxide synthases: structure, function and inhibition, Biochem. J., 2001, vol. 357, pt. 3, pp. 593–615.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pacher, P., Beckman, J.S., and Liaudet, L., Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 2007, vol. 87, no. 1, pp. 315–424.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dede, S., Deger, Y., Kahraman, T., and Kiliçalp, D., Effects of X-ray radiation on oxidation products of nitric oxide in rabbits treated with antioxidant compounds, Turk. J. Biochem., 2009, vol. 34, no. 1, pp. 15–18.Google Scholar
  7. 7.
    Forstermann, U. and Li, H., Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling, Br. J. Pharmacol., 2011, vol. 164, no. 2, pp. 213–223.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tschudi, M.R., Mesaros, S., Luscher, T.F., and Malinski, T., Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Increased decomposition by superoxide in hypertension, Hypertension, 1996, vol. 27, no. 1, pp. 32–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Swei, A., Lacy, F., DeLano, F.A., and Schmid-Shonbein, G.W., Oxidative stress in the Dahl hypertensive rats, Hypertension, 1997, vol. 30, no. 6, pp. 1628–1633.CrossRefPubMedGoogle Scholar
  10. 10.
    Kerr, S., Brosman, M.J., McIntyre, M., Reid, J.L., Dominiczak, A.F., and Hamilton, C.A., Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium, Hypertension, 1999, vol. 33, no. 6, pp. 1353–1358.CrossRefPubMedGoogle Scholar
  11. 11.
    Pandey, K.B. and Rizvi, S.I., Plant polyphenols as dietary antioxidants in human health and disease, Oxid. Med. Cell. Longev., 2009, vol. 2, no. 5, pp. 270–278.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Van Golde, P.H., van der Westelaken, M., Bouma, B.N., and van de Wiel, A., Characteristics of piraltin, a polyphenol concentrate, produced by freeze-drying of red wine, Life Sci., 2004, vol. 74, no. 9, pp. 1159–1166.CrossRefPubMedGoogle Scholar
  13. 13.
    Das, S., Santani, D.D., and Dhalla, N.S., Experimental evidence for the cardioprotective effects of red wine, Exp. Clin. Cardiol., 2007, vol. 12, no. 1, pp. 5–10.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Zabbarova, I. and Kanai, A., Targeted delivery of radioprotective agents to mitochondria, Mol. Interv., 2008, vol. 8, no. 6, pp. 294–302.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dohadwala, M.M. and Vita, J.A., Grapes and cardiovascular disease, J. Nutr., 2009, vol. 139, no. 9, pp. 1788S–1793s.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Basli, A., Soulet, St., Chaher, N., Merillon, J.-M., Chibane, M., Monti, J.-P., and Richard, T., Wine polyphenols: potential agents in neuroprotection, Oxid. Med. Cell Longev., 2012, vol. 2012, pp. 2–14.CrossRefGoogle Scholar
  17. 17.
    Svobodova, A., Psotova, J., and Walterova, D., Natural phenolics in the prevention of UV-induced skin damage. A review, Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech. Repub., 2003, vol. 147, no. 2, pp. 137–145.CrossRefPubMedGoogle Scholar
  18. 18.
    Londhe, J.S., Devasagayam, T.P.A., Foo, L.Y., and Ghaskadbi, S.S., Radioprotective properties of polyphenols from Phyllanthus amarus Linn, J. Radiat. Res., 2009, vol. 50, no. 4, pp. 303–309.CrossRefPubMedGoogle Scholar
  19. 19.
    Greenrod, W. and Fenech, M., The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionizing radiation-induced DNA damage in vitro, Mutagenesis, 2003, vol. 18, no. 2, pp. 119–126.CrossRefPubMedGoogle Scholar
  20. 20.
    Barnes, S., D’Alessandro, T., Kirk, M.C., Patel, R.P., Boersma, B.J., and Darley-Usmar, V.M., The importance of in vivo metabolism of polyphenols and their biological actions, in Phytochemicals: Mechanisms of Action, Meskin, M.S., et al., Eds., Florida: CRC Press, 2004, ch. 4, pp. 51–59.Google Scholar
  21. 21.
    Drel, V.R. and Sybirna, N., Protective effects of polyphenolics in red wine on diabetes associated oxidative/ nitrative stress in streptozotocin-diabetic rats, Cell Biol. Int., 2010, vol. 34, no. 12, pp. 1147–1153.CrossRefPubMedGoogle Scholar
  22. 22.
    Nichols, J.A. and Katiyar, S.K., Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms, Arch. Dermatol. Res., 2010, vol. 302, no. 2, pp. 71–83.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Singleton V.L., Orthofer, R., and Lamuela-Raventos, R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Methods Enzymol., 1999, vol. 299, pp. 152–178.CrossRefGoogle Scholar
  24. 24.
    Miranda, K.M., Espey, M.G., and Wink, D.A., A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite, Nitric Oxide, 2001, vol. 5, no. 1, pp. 62–71.CrossRefPubMedGoogle Scholar
  25. 25.
    Dawson, J. and Knowles, R.G., A microtiter-plate assay of human NOS isoforms, Methods Mol. Biol., 1998, vol. 100, pp. 237–242.PubMedGoogle Scholar
  26. 26.
    Lowri, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.Google Scholar
  27. 27.
    Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.CrossRefPubMedGoogle Scholar
  28. 28.
    Towbin, H., Staehelin, T., and Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 9, pp. 4350–4354.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Molla, M. and Panes, J., Radiation-induced intestinal inflammation, World J. Gastroenterol., 2007, vol. 13, no. 22, pp. 3043–3046.PubMedPubMedCentralGoogle Scholar
  30. 30.
    McFarland, H.I., Puig, M., Grajkowska, L.T., Tsuji, K., Lee, J.P., Mason, K.P., Verthelyi, D., and Rosenberg, A.S., Regulatory T cells in γ irradiation-induced immune suppression, PLoS One, 2012, vol. 7, no. 6, p. e39092.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gisone, P., Dubner, D., Perez, M.D.R., Michelin, S., and Puntarulo, S., The role of nitric oxide in the radiation-induced effects in the developing brain, In Vivo, 2004, vol. 18, no. 3, pp. 281–292.PubMedGoogle Scholar
  32. 32.
    Jelkmann, W., Regulation of erythropoietin production, J. Physiol., 2011, vol. 589, pt 6, pp. 1251–1258.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu, S.Z., Nonlinear dose-response relationship in the immune system following exposure to ionizing radiation: mechanisms and implications, Nonlinearity Biol. Toxicol. Med., 2003, vol. 1, no. 1, pp. 71–92.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Prasad, K.N., Cole, W.C., and Hasse, G.M., Health risks of low dose ionizing radiation in humans: a review, Exp. Biol. Med. (Maywood), 2004, vol. 229, no. 5, pp. 378–382.Google Scholar
  35. 35.
    Matsumoto, H., Takahashi, A., and Ohnishi, T., Nitric oxide radicals choreograph a radioadaptive response, Cancer Res., 2007, vol. 67, no. 18, pp. 8574–8579.CrossRefPubMedGoogle Scholar
  36. 36.
    Roberts, R.A., Laskin, D.L., Smith, C.V., Robertson, F.M., Allen, E.M.G., Doorn, J.A., and Slikker, W., Nitrative and oxidative stress in toxicology and disease, Toxicol. Sci., 2009, vol. 112, no. 1, pp. 4–16.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wink, D.A., Hines, H.B., Cheng, R.Y.S., Switzer, C.H., Flores-Santana, W., Vitek, M.P., Ridnour, L.A., and Colton, C.A., Nitric oxide and redox mechanisms in the immune response, J. Leukoc. Biol., 2011, vol. 89, no. 6, pp. 873–891.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Beckman, J.S., Beckman, J.W., Chen, J., Marshall, P.A., and Freeman, B.A., Apparent hydroxyl radical production by peroxinitrite: implications for endotherlial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, no. 4, pp. 1620–1624.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee, C.I., Liu, X., and Zweier, J.L., Regulation of xanthine oxidase by nitric oxide and peroxynitrite, J. Biol. Chem., 2000, vol. 275, no. 13, pp. 9369–9376.CrossRefPubMedGoogle Scholar
  40. 40.
    Sutherland, B.A., Rahman, R.M., Appleton, I., Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration, J. Nutr. Biochem., 2006, vol. 17, no. 5, pp. 291–306.CrossRefPubMedGoogle Scholar
  41. 41.
    Wallace, T.C., Anthocyanins in cardiovascular disease, Adv. Nutr., 2011, vol. 2, no. 1, pp. 1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Knowles, R.G. and Moncada, S., Nitric oxide synthases in mammals, Biochem. J., 1994, vol. 298, pt. 2, pp. 249–258.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Foster, M.W., Hess, D.T., and Stamler, J.S, Protein S-nitrosylation in health and disease: a current perspective, Trends Mol. Med., 2009, vol. 15, no. 9, pp. 391–404.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wu, C., Parrott, A.M., Fu, C., Liu, T., Marino, S.M., Gladyshev, V.N., Jain, M.R., Baykal, A.T., Li, Q., Oka, S., Sadoshima, J., Beuve, A., Simmons, W.J., and Li, H., Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies, Antioxid. Redox Signal., 2011, vol. 15, no. 9, pp. 2565–2604.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Anand, P. and Stamler, J.S., Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease, J. Mol. Med. (Berl.), 2012, vol. 90, no. 3, pp. 233–244.CrossRefGoogle Scholar
  46. 46.
    Hernansanz-Agustin, P., Izquierdo-Alvarez, A., Garcia-Ortiz, A., Ibiza, S., Serrador, J.M., and Martinez-Ruiz, A., Nitrosothiols in the immune system: signaling and protection, Antioxid. Redox. Signal., 2013, vol. 18, no. 3, pp. 288–308.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lu, C., Kavalier, A., Lukyanov, E., and Gross, S.S., S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation: a common paradigm for gasotransmitter signaling by H2S and NO, Methods, 2013, vol. 62, no. 2, pp. 177–181.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    D’Alessandro, T., Prasain, J., Benton, M.R., Botting, N., Moore, R., Darley-Usmar, V., Patel, R., and Barnes, S., Polyphenols, inflammatory response, and cancer prevention: chlorination of isoflavones by human neutrophils, J. Nutr., 2003, vol. 133, no. 11, Suppl. 1, pp. 3773S–3777S.PubMedGoogle Scholar
  49. 49.
    Kamisaki, Y., Wada, K., Bian, K., Balabanli, B., Davis, K., Martin, E., Behbod, F., Lee, Y.-C., and Murad, F., An activity in rat tissues that modifies nitrotyrosine-containing proteins, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 20, pp. 11584–11589.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Koeck, T., Fu, X., Hazen, S.L., Crabb, J.W., Stuehr, D.J., and Aulak, K.S., Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria, J. Biol. Chem., 2004, vol. 279, no. 26, pp. 27257–27262.CrossRefPubMedGoogle Scholar
  51. 51.
    Monteiro, H.P., Arai, R.J., and Travassos, L.R., Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling, Antioxid. Redox Signal., 2008, vol. 10, no. 5, pp. 843–889.CrossRefPubMedGoogle Scholar
  52. 52.
    Kelly, G.S., Quercetin. Monograph, Altern. Med. Rev., 2011, vol. 16, no. 2, pp. 172–194.PubMedGoogle Scholar
  53. 53.
    Leopoldini, M., Russo, N., and Toscano, M., The molecular basis of working mechanism of natural polyphenolic antioxidants, Food Chem., 2011, vol. 125, no. 2, pp. 288–306.CrossRefGoogle Scholar
  54. 54.
    Ishimoto, H., Tai, A., Yoshimura, M., Amakura, Y., Yoshida, T., Hatano, T., and Ito, H., Antioxidative properties of functional polyphenols and their metabolites assessed by an ORAC assay, Biosci. Biotechnol. Biochem., 2012, vol. 76, no, 2, pp. 395–399.CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Department of BiochemistryIvan Franko Lviv National UniversityLvivUkraine

Personalised recommendations