Advertisement

Cytology and Genetics

, Volume 49, Issue 2, pp 139–145 | Cite as

Mechanisms of antarctic vascular plant adaptation to abiotic environmental factors

  • I. P. Ozheredova
  • I. Yu. Parnikoza
  • O. O. Poronnik
  • I. A. Kozeretska
  • S. V. Demidov
  • V. A. Kunakh
Article

Abstract

Native species of the Antarctic Deschampsia antarctica and Colobanthus quitensis exist at the limits of survival of vascular plants. Fundamental adaptations to abiotic environmental factors that qualitatively distinguish them from the other vascular plants of extreme regions, namely temperature, ultraviolet radiation hardiness, and their genetic plasticity in the changeable environment are discussed.

Keywords

Deschampsia antarctica Colobanthus quitensis Antarctic mechanisms of adaptation stress protein genome plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Voinikov, V.K., Borovskii, G.B., Kolesnichenko, A.V., and Rikhvanov, E.G., Stressovye belki rastenii (Stress Proteins of Plants), Irkutsk: Inst. Geogr., Sib. Otd., Ross. Akad. Nauk, 2004.Google Scholar
  2. 2.
    Stavnitser, M.F., Taemnitsi shostoji chastyny svitu (Mysteries of the Sixth Part of the World), Kyiv, 1958.Google Scholar
  3. 3.
    Convey, P., Gibson, J.A.E., Hillenbrand, C.-D., et al., Antarctic terrestrial life—challenging the history of the frozen continent? Biol. Rev. Cambridge Philos. Soc., 2008, vol. 83, no. 2, pp. 103–117.CrossRefPubMedGoogle Scholar
  4. 4.
    Parnikoza, I., Kozeretska, I., and Kunakh, V., Vascular plants of the maritime Antarctic: origin and adaptation, Am. J. Plant Sci., 2011, vol. 2, no. 3, pp. 381–395.CrossRefGoogle Scholar
  5. 5.
    Frenot, Y., Chown, S.L., Whinam, J., et al., Biological invasions in the Antarctic: extent, impacts and implications, Biol. Rev. Cambridge Philos. Soc., 2005, vol. 80, no. 1, pp. 45–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Alberdi, M., Bravo, L.A., Gutierrez, A., et al., Ecophysiology of Antarctic vascular plants, Physiol. Plant, 2002, vol. 115, no. 1, pp. 479–486.CrossRefPubMedGoogle Scholar
  7. 7.
    Chwedorzewska, K.J. and Bednarek, P.T., Genetic and epigenetic studies on populations of Deschampsia antarctica Desv. from contrasting environments on King George Island, Pol. Polar Res., 2011, vol. 32, no. 1, pp. 15–26.Google Scholar
  8. 8.
    Holdgate, M.W., Terrestrial ecology in the maritime Antarctica, in Biologie Antarctique, Carick, R., Holdgate, M., and Prevost, J., Eds., Paris, 1964, pp. 181–940.Google Scholar
  9. 9.
    Crossley, L., Explore Antarctica, Cambridge: Univ. Press, 1995.Google Scholar
  10. 10.
    Antarctica: Secrets of the Southern Continent, McGonigal, D., Ed., London, 2008.Google Scholar
  11. 11.
    Soper, T., Antarctica: a Guide to the Wildlife, Chalfont St. Peter, UK: Bradt Guides, 2008.Google Scholar
  12. 12.
    Ross, R.M., Hofmann, E.E., and Quetin, L.B., Foundations for Ecological Research West of the Antarctic Peninsula, Antarct. Res. Ser., Washington, DC, 1996, vol. 70.Google Scholar
  13. 13.
    Kim, J.H., Ahn, I.-Y., Lee, K.S., et al., Vegetation of Barton Peninsula in the neighborhood of King Sejong Station (King George Island, maritime Antarctic), Polar. Biol., 2007, vol. 30, pp. 903–916.CrossRefGoogle Scholar
  14. 14.
    Hill, P.W., Farrar, J., Roberts, P., et al., Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition, Nat. Climate Change, 2011, vol. 1, pp. 50–53.CrossRefGoogle Scholar
  15. 15.
    Zhivet’ev, M.A., Graskova, I.A., Dudareva, L.V., et al., Change of fatty-acid composition in plants during adaptation to hypothermia, J. Stress Physiol. Biochem., 2010, vol. 6, no. 4, pp. 51–65.Google Scholar
  16. 16.
    Taran, N.Yu., Batsmanova, L.M., and Okanenko, O.A., Adaptive responses of Deschampsia antarctica Desv. to oxidative stress under Antarctic conditions, Ukr. Bot. Zh., 2007, vol. 64, no. 2, pp. 279–289.Google Scholar
  17. 17.
    Alekhina, N.D., Balnokin, Yu.V., Gavrilenko, V.F., et al., Fiziologiya rastenii (Plant Physiology), Ermakov, I.P., Ed., Moscow: Academia, 2005.Google Scholar
  18. 18.
    Parnikoza, I.Yu., Inozemtseva, D.M., Tyschenko, O.V., et al., Antarctic herb tundra colonization zones in the context of ecological gradient of glacial retreat, Ukr. Bot. Zh., 2008, vol. 65, no. 4, pp. 504–511.Google Scholar
  19. 19.
    Pearce, R.S., Molecular analysis of acclimation to cold, Plant Growth Reg., 1999, vol. 29, pp. 47–76.CrossRefGoogle Scholar
  20. 20.
    Thomsashow, M.F., Plant cold acclimation: freezing tolerance genes and regulatory mechanisms, Plant. Mol. Biol., 1999, vol. 50, pp. 571–599.Google Scholar
  21. 21.
    Chinnusamy, V., Zhu, J., and Zhu, J.-K., Gene regulation during cold acclimation in plants, Physiol. Plant, 2006, vol. 126, pp. 52–61.CrossRefGoogle Scholar
  22. 22.
    Trunova, T.I., Rastenie i nizkotemperaturnyi stress (Plant and Low-Temperature Stress), Moscow: Nauka, 2007.Google Scholar
  23. 23.
    Kolesnichenko, A.V. and Voinikov, V.K., Belki nizkotemperaturnogo stressa u rastenii (Low-Temperature Stress Proteins in Plants), Irkutsk, 2003.Google Scholar
  24. 24.
    Grabel’nykh, O.I., Function and location of the 310-kDa stress protein in plant mitochondria, Extended Abstract of Candidate’s (Biol.) Dissertation, Irkutsk, 2000.Google Scholar
  25. 25.
    Ushakova, D.N. and Dal’, V.I., Bol’shoi entsiklopedicheskii slovar’ (Great Encyclopedic Dictionary), Russia, dicView, 2000.Google Scholar
  26. 26.
    Huiskes, A.H.L., Convey, P., and Bergstom, D.M., Trends in Antarctic terrestrial and limnetic ecosystems, in Antarctica as a Global Indicator, Springer-Verlag, 2006, pp. 1–13.Google Scholar
  27. 27.
    Bravo, L.A. and Griffith, M., Characterization of antifreeze activity in Antarctic plants, J. Exp. Bot., 2005, vol. 56, no. 414, pp. 1189–1196.CrossRefPubMedGoogle Scholar
  28. 28.
    Taran, N.Yu., Okanenko, O.A., Ozheredova, I.P., et al., Characteristics of the composition of components of lipid and pigment-protein complexes of photosynthetic membranes of Deschampsia antarctica Desv., Dop. Nats. Akad. Navuk Ukr., 2009, vol. 2, pp. 173–178.Google Scholar
  29. 29.
    Giełwanowska, I., Szczuka, E., Bednara, J., and Górrecki, R., Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats, Ann. Bot., 2005, vol. 96, pp. 1109–1119.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    O’Reilly, J.L., Policy and Practice in Antarctica, Pro Quest, 2008.Google Scholar
  31. 31.
    Xu, Z. and Li, J., in Proc. 11th IAPTCB Congr. “Biotechnology and Sustainable Agriculture 2006 and Beyond,” Beijing, August 13–18, 2006, Dordrecht: Springer-Verlag, 2008.Google Scholar
  32. 32.
    Alberdi, M. and Corcuera, L.J., Cold acclimation in plants, Phytochemistry, 1991, vol. 30, pp. 3177–3184.CrossRefGoogle Scholar
  33. 33.
    Kyryachenko, S.S., Kozeretska, I.A., and Rakusa-Suszczewski, S., The genetic and molecular biological enigma of Deschampsia antarctica in Antarctica, Cytol. Genet., 2005, vol. 39, no. 4, pp. 75–80.Google Scholar
  34. 34.
  35. 35.
    Bil’danova, L.L., Salina, E.A., and Shumnyi, V.K., Basic properties and characteristics of evolution of antifreeze proteins, Vavilov. Zh. Genet. Selekts., 2012, vol. 16, no. 1, pp. 250–270.Google Scholar
  36. 36.
    Spangengern, G., et al., WO Patent 049835 A1, 2005. http://www.wipo.int/pctdb/en/wo.jsp?IA=AU2004001633&DISPLAY=DESC
  37. 37.
    Kalendar, R., Tanskanen, J., Chang, W., et al., Cassandra retrotransposons carry independently transcribed 5S RNA, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 15, pp. 5833–5838.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Greenberg, A.K. and Donoghue, M.J., Molecular systematics and character of evolution in Cryophyllaceae, Taxon, 2011, vol. 60, no. 6, pp. 1637–1652.Google Scholar
  39. 39.
    Kosakovskaya, I.V., Stressovye belki rastenii (Stress Proteins of Plants), Kyiv, 2008.Google Scholar
  40. 40.
    Gusta, L.V., Trischuk, R., and Weiser, C.J., Plant cold acclimation: the role of abscisic acid, Plant Growth Reg., 2005, vol. 24, pp. 308–318.CrossRefGoogle Scholar
  41. 41.
    Voinikov, V.K., Ivanova, T.G., and Rudikovskii, A.V., Heat shock proteins of plants, Fiziol. Rast., 1994, vol. 31, pp. 970–979.Google Scholar
  42. 42.
    Zuciga, G.E., Zuciga-Feest, A., Inostroza, P., et al., Sugars and enzyme activity in the grass Deschampsia Antarctica, Antarct. Sci., 2003, vol. 15, no. 4, pp. 483–491.CrossRefGoogle Scholar
  43. 43.
    Zuciga-Feest, A., Ort, D.R., Gutierrez, A., et al., Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica, Photosynth. Res., 2005, vol. 83, pp. 75–86.CrossRefGoogle Scholar
  44. 44.
    Philipp, M., Bocher, J., Mattson, O., and Woodell, S.R.J., A quantitative approach to the sexual reproductive biology and population structure of some arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis, Meddr. Gronland, Biosci., 1990, vol. 34, pp. 1–60.Google Scholar
  45. 45.
    Hennion, F., Huiskes, A.H.L., Robinson, S., and Convey, P., Physiological traits of organisms in a changing environment, in Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Bergstrom, D.M., Ed., Dordrecht: Springer-Verlag, 2006, pp. 127–157.Google Scholar
  46. 46.
    Ruhland, C.T., Xiong, F.S., Clark, W.D., and Day, T.A., The influence of ultraviolet-b radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica, Photochem. Photobiol., 2005, vol. 81, no. 5, pp. 1086–1093.CrossRefPubMedGoogle Scholar
  47. 47.
    Pereira, B.K., Rosa, R.M., Silva, J., et al., Protective effects of three extracts from Antarctic plants against ultraviolet radiation in several biological models, Photochem. Photobiol., 2009, vol. 96, no. 2, pp. 117–129.CrossRefGoogle Scholar
  48. 48.
    Kunakh, V.A., Zhebrakovskie chteniya. 3. Ontogeneticheskaya plastichnost’ genoma kak osnova adaptivnosti rastenii (Zherbakov Memorial Conf. “Ontogenetic Genome Plasticity as a Basis of Plant Adaptability”), Kil’chevskii, A.V., Ed., Minsk: Inst. Genet. Tsitol. Nats. Akad. Navuk Belarusi, 2011.Google Scholar
  49. 49.
    Kunakh, V.A., Somatic cell genome plasticity and adaptability of plants, in Molekulyarnaya i prikladnaya genetika: Sb. nauch. tr (Molecular and Applied Genetics: Collected Scientific Papers), Minsk, 2011, vol. 12, pp. 7–14.Google Scholar
  50. 50.
    Kunakh, V.A., Mobilni genetichni elementi i plastichnist’ genomu roslin (Transposable Genetic Elements and Genome Plasticity in Plants), Kyiv: Logos, 2013.Google Scholar
  51. 51.
    Parnikoza, I.Yu., Kozeretskaya, I.A., Miryuta, N.Yu., et al., Environmentally caused interpopulation heterogeneity of Deschampsia antarctica Desv. in maritime Antarctic, in Nauch. konf. “Rossiya v Antarktike,” S.-Peterburg, 12–14 aprelya 2006 g., Tezisy dokladov (Proc. Sci. Conf. “Russia in Antarctic,” St. Petersburg, April 12–14, 2006), St. Petersburg, 2006, pp. 124–125.Google Scholar
  52. 52.
    Levin, D.A., The Role of Chromosome Changes in Plant Evolution, Oxford: Univ. Press, 2000.Google Scholar
  53. 53.
    Seledets, V.P. and Probatova, N.S., Ecological range and some problems of differentiation in the family Poaceae in the Russian Far East, in Problemy evolyutsii: Sb. nauch. st (Problems of Evolution: Collected Scientific Papers), Vladivostok: Dal’nauka, 2003, vol. 5, pp. 213–220.Google Scholar
  54. 54.
    Nuelas, J.P., Sardans, J., Estiarte, M., et al., Evidence of current impact of climate change on life: a walk from genes to the biosphere, Global Change Biol., 2013, vol. 19, pp. 2303–2338.CrossRefGoogle Scholar
  55. 55.
    Purdy, B.G. and Bayer, R.J., Genetic diversity in the tetraploid sand dune endemic Deschampsia mackenzieana and its widespread diploid progenitor D. cespitosa (Poaceae), Am. J. Bot., 1995, vol. 82, pp. 121–130.CrossRefGoogle Scholar
  56. 56.
    Kunakh, V.A., Additional, or B-chromosomes of plants: the origin and biological significance, Visn. Ukr. Tov. Genet. Selekts., 2010, vol. 8, no. 1, pp. 99–139.Google Scholar
  57. 57.
    Bennett, M.D., Smith, J.B., and Heslop-Harrison, J.S., Nuclear DNA amounts in angiosperms, Proc. R. Soc. Lond., B, 1982, vol. 126, no. 1203, pp. 179–199.CrossRefGoogle Scholar
  58. 58.
    Nkongolo, K.K., Deck, A., and Michael, P., Molecular and cytological analysis of Deschampsia cespitosa population from Northern Ontario (Canada), Genome, 2001, vol. 44, no. 5, pp. 818–825.CrossRefPubMedGoogle Scholar
  59. 59.
    Parnikoza, I.Yu., Miryuta, N.Yu., Maidanyuk, D.N., et al., Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in maritime Antarctic, Polar Sci., 2007, vol. 1, nos. 2/4, pp. 121–128.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • I. P. Ozheredova
    • 1
  • I. Yu. Parnikoza
    • 2
  • O. O. Poronnik
    • 2
  • I. A. Kozeretska
    • 1
  • S. V. Demidov
    • 1
  • V. A. Kunakh
    • 2
  1. 1.Taras Shevchenko National UniversityKyivUkraine
  2. 2.Institute of Molecular Biology and GeneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations