Skip to main content
Log in

The possible involvement of D-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin-dependent proteolytic pathway

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Cysteine proteinases and their inhibitors ‘cystatins’ play essential roles in plant growth and development. They are involved in various signaling pathways and in the response to wide ranges of biotic and abiotic environmental stresses. To investigate their possible influence from D-amino acids or their metabolism in vivo, Arabidopsis seedlings were allowed to grow under four physico-chemically different D-amino acids including D-aspartate, D-serine, D-alanine and D-phenylalanine containing media. The reverse transcription polymerase chain reaction (RT-PCR) analysis of cysteine proteinase and cystatin gene expressions showed that the addition of D-amino acid to the plant growth media considerably induce the expression of proteinase transcript while decrease the expression level of inhibitor gene in the leaf and root tissues of the test plant in overall. Based on the obtained results the potential impact of D-amino acids or their metabolism on the activity of cysteine proteinase/cystatin-dependent proteolytic apparatus as well as their possible cooperation were predicted and discussed in the plant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiśniewski, K. and Zagdańska, B., Genotype-dependent proteolytic response of spring wheat to water deficiency, J. Exp. Bot., 2001, vol. 52, pp. 1455–1463.

    Article  PubMed  Google Scholar 

  2. Grudkowska, M.M. and Zagdan-ska, B., Multifunctional role of plant cysteine proteinases, Acta Biochim. Pol., 2004, vol. 51, pp. 609–624.

    CAS  PubMed  Google Scholar 

  3. Aberlenc-Bertossi, F., Chabrillange, N., Duival, Y., and Tregear, J., Contrasting globulin and cysteine proteinase gene expression patterns reveal fundamental developmental differences between zygotic and somatic embryos of oil palm, Tree Physiol., 2008, vol. 28, pp. 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  4. Fan, J., Yang, Y.W., Gao, X., et al., Expression of a senescence-associated cysteine protease gene related to peel pitting of navel orange (Citrus sinensis L. Osbeck), Plant Cell, Tissue Organ Cult., 2009, vol. 98, pp. 281–289.

    Article  CAS  Google Scholar 

  5. Rzychon, M., Chmiel, D., and Stec-Niemczyk, J., Modes of inhibition of cysteine proteases, Acta Biochim. Pol., 2004, vol. 51, pp. 861–873.

    CAS  PubMed  Google Scholar 

  6. Solomon, M., Belenghi, B., Delledonne, M., et al., The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants, Plant Cell, 1999, vol. 11, pp. 431–443.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Martínez, M., Cambra, I., González-Melendi, P., et al., Cia cysteine-proteases and their inhibitors in plants, Physiol. Plant., 2012, vol. 145, pp. 85–94.

    Article  PubMed  Google Scholar 

  8. Bode, W., Engh, R., Musil, D., et al., Mechanism of interaction of cysteine proteinases and their protein inhibitors as compared to the serine proteinase-inhibitor interaction, Biol. Chem. Hoppe-Seyler, 1990, vol. 371, pp. 111–118.

    Article  CAS  PubMed  Google Scholar 

  9. Grzonka, Z., Jankowska, E., Kasprykowski, F., et al., Structural studies of cysteine proteases and their inhibitors, Acta Biochim. Pol., 2001, vol. 48, pp. 1–20.

    CAS  PubMed  Google Scholar 

  10. Santamaría, M.E., Hernández-Crespo, P., Ortego, F., et al., Cysteine peptidases and their inhibitors in tetranychus urticae: a comparative genomic approach, BMC Genom., 2012, vol. 13, pp. 307–319.

    Article  Google Scholar 

  11. Bode, W. and Huber, R., Structural basis of the endoproteinase-protein inhibitor interaction, Biochim. Biophys. Acta, 2000, vol. 1477, pp. 241–252.

    Article  CAS  PubMed  Google Scholar 

  12. Barrett, A.J., Fritz, H., and Grubb, A., Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin, Biochem. J., 1998, vol. 236, pp. 312–318.

    Google Scholar 

  13. Rawling, N.D. and Barrett, A.J., Evolution of proteins of the cystatin superfamily, J. Mol. Evol., 1990, vol. 30, pp. 60–71.

    Article  Google Scholar 

  14. Bateman, A., Birney, E., Cerruti, L., et al., The Pfam protein families database, Nucleic Acids Res., 2002, vol. 30, pp. 276–280.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Martinez, M. and Diaz, I., The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship, BMC Evol. Biol., 2008, vol. 8, pp. 198–209.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wiederanders, B., Structure-function relationships in class CA1 cysteine peptidase propeptides, Acta Biochim. Pol., 2003, vol. 59, pp. 691–713.

    Google Scholar 

  17. Simpson, D.J., Proteolytic degradation of cereal prolamins—the problem with praline, Plant Sci., 2001, vol. 161, pp. 825–838.

    Article  CAS  Google Scholar 

  18. Shindo, T., Misas-Villamil, J.C., Horger, N.C., et al., A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14, PLoS One, 2012, vol. 7, p. e29317.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Arai, S., Matsumoto, I., Emori, Y., and Abe, K., Plant seed cystatins and their target enzymes of endogenous and exogenous origin, J. Agric. Food Chem., 2002, vol. 50, pp. 6612–6617.

    Article  CAS  PubMed  Google Scholar 

  20. Diop, N.N., Kidric, M., Repellin, A., et al., A multi-cystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves, FEBS Lett., 2004, vol. 577, pp. 545–550.

    Article  CAS  PubMed  Google Scholar 

  21. Belenghi, B., Acconcia, F., Trovato, M., et al., AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death, Eur. J. Biochem., 2003, vol. 270, pp. 2593–2604.

    Article  CAS  PubMed  Google Scholar 

  22. Tishkov, V.L. and Khoronenkova, S.V., D-amino acid oxidase: structure, catalytic mechanism and practical application, Russ. J. Biochem., 2005, vol. 70, pp. 51–56.

    Google Scholar 

  23. Gholizadeh, A., Faizi, M.H., and Kohnehrouz, B.B., Molecular detection of drought stress-inducible D-amino acid oxidase gene from Zea mays L., Asian J. Plant Sci., 2009, vol. 8, pp. 224–229.

    Article  CAS  Google Scholar 

  24. Annedi, S.C., Biabani, F., Poduch, E., et al., Engineering D-amino acid containing novel protease inhibitors using catalytic site architecture, Bioorg. Med. Chem., 2006, vol. 14, pp. 214–236.

    Article  CAS  PubMed  Google Scholar 

  25. Sato, A., Tri, J., Nakahara, K., et al., Combination of non-natural D-amino acid derivatives and allophenylnorstatine-dimethylthioproline scaffold in HIV protease inhibitors have high efficacy in mutant HIV, J. Med. Chem., 2008, vol. 51, pp. 2992–3004.

    Article  PubMed  Google Scholar 

  26. Ausubel, F.M., Brent, R., Kingston, R.E., et al., Current Protocols in Molecular Biology, New York: Wiley, 1991.

    Google Scholar 

  27. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method, Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  28. Palma, J.M., Sandalio, L.M., Corpas, F.J., et al., Plant proteases, protein degradation, and oxidative stress: role of peroxisomes, Plant Physiol. Biochem., 2002, vol. 40, pp. 521–530.

    Article  CAS  Google Scholar 

  29. Ueda, T., Seo, S., Ohashi, Y., and Hashimoto, J., Circadian and senescence-enhanced expression of a tobacco cysteine protease gene, Plant. Mol. Biol., 2000, vol. 44, pp. 649–657.

    Article  CAS  PubMed  Google Scholar 

  30. Erickson, O., Hertzberg, M., and Nasholm, T., A conditional marker gene allowing both positive and negative selection in plants, Nat. Biotechnol., 2004, vol. 22, pp. 455–458.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gholizadeh.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, A. The possible involvement of D-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin-dependent proteolytic pathway. Cytol. Genet. 49, 73–79 (2015). https://doi.org/10.3103/S0095452715020036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715020036

Keywords

Navigation