Skip to main content
Log in

Study of the canonical Wnt signaling activity in animals of different ages in the conditions of embryonic cardiac-specific β-catenin ablation

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Using conditional-knockout animals, we studied the expression of the genes involved in the canonical Wnt signaling pathway (TCF-4, Axin-2) and the genes controlled by this signaling pathway (c-fos, cyclin D1, c-myc, and Cx43) in the myocardium of mice under the condition of embryonic cardio-specific ablation of one allele of the β-catenin gene. The inhibition of the canonical Wnt signaling was observed in all age groups tested (1, 3, and 6 months). An analysis of the genes controlled by the canonical Wnt pathway allowed us to reveal changes of their expression in the tissue of animals with cardiac-specific β-catenin haploinsufficiency. The importance of a normally functioning canonical Wnt signaling for the growth and development of the adult heart is especially underlined in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao, T.P. and Kuhl, M., An updated overview on Wnt signaling pathways: a prelude for more, Circ. Res., 2010, vol. 106, no. 12, pp. 1798–1806.

    Article  CAS  PubMed  Google Scholar 

  2. Clevers, H., Wnt/β-catenin signaling in development and disease, Cell, 2006, vol. 127, no. 3, pp. 470–480.

    Article  Google Scholar 

  3. Bergmann, M.W., Wnt signaling in adult hypertrophy and remodeling: lessons learned from cardiac development, Circ. Res., 2010, vol. 107, no. 10, pp. 1198–1208.

    Article  CAS  PubMed  Google Scholar 

  4. Hirschy, A., Croquelois, A., Perriard, E., et al., Stabilised β-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death, Basic Res. Cardiol., 2010, vol. 105, no. 5, pp. 597–608.

    Article  CAS  PubMed  Google Scholar 

  5. Malekar, P., Hagenmueller, M., Anyanwu, A., et al., Wng signaling is critical for maladaptive cardiac hypertrophy and accelerates myo cardial remodeling, Hypertension, 2010, no. 55, pp. 939–945.

    Google Scholar 

  6. Brade, T., Manner, J., and Kuhl, M., The role of Wnt signaling in cardiac development and tissue remodeling un the mature heart, Cardiovasc. Res., 2006, vol. 72, no. 2, pp. 198–209.

    Article  CAS  PubMed  Google Scholar 

  7. Barandon, L., Coufinhal, T., Ezan, J., et al., Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA, Circulation, 2003, vol. 108, no. 18, pp. 2282–2289.

    Article  CAS  PubMed  Google Scholar 

  8. Hahn, J.Y., Cho, H.J., Bae, J.W., et al., β-Catenin overexpression reduces myocardial infarct size through differential effects on carbiomyocytes and cardiac fibroblasts, J. Biol. Chem., 2006, vol. 281, no. 41, pp. 30979–30989.

    Article  CAS  PubMed  Google Scholar 

  9. Duan, J., Gherghe, C., Liu, D., et al., Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair, EMBO J., 2011, vol. 31, no. 2, pp. 429–442.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Oerlemans, M.I., Goumans, J., van Middelaar, B., et al., Active Wnt signaling in response to cardiac injury, Basic. Res. Cardiol, 2010, vol. 105, no. 5, pp. 631–641.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kaga, S., Zhan, L., Altaf, E., and Maulik, N., Glycogen synthase kinase-3β/β-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and surviving expression in rat ischemic preconditioned myocardium, J. Mol. Cell. Cardiol., 2006, vol. 40, no. 1, pp. 138–147.

    Article  CAS  PubMed  Google Scholar 

  12. Sugden, P.H., Fuller, S.J., Weiss, S.C., and Clerk, A., Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signaling and a therapeutic target? A critical analysis, Br. J. Pharm., 2008, no. 153, pp. 137–153.

    Google Scholar 

  13. Chen, X., Shevtsov, S.P., Hsich, E., et al., The β-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy, Mol. Cell Biol., 2006, vol. 26, no. 12, pp. 4462–4473.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Qu, J., Zhou, J., Yi, X.P., Dong, B., et al., Cardiac-specific haploinsufficiency of β-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction, J. Mol. Cell Cardiol., 2007, vol. 43, no. 3, pp. 319–326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zelarayan, L.C., Noack, C., Sekkali, B., et al., β-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation, Proc. Nat. Acad. Sci. U.S.A., 2008, vol. 105, no. 50, pp. 19762–19767.

    Article  CAS  Google Scholar 

  16. Barandon, L., Couffinhal, T., Ezan, J., et al., Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA, Circulation, 2003, vol. 108, no. 18, pp. 2282–2289.

    Article  CAS  PubMed  Google Scholar 

  17. Baurand, A., Zelarayan, L., Betney, R., et al., β-Catenin downregulation is required for adaptive cardiac remodeling, Circ. Res., 2007, vol. 100, no. 9, pp. 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  18. Piven, O.O., Kostetskii, I.E., Macewicz, L.L., et al., Requirement for N-cadherin-catenin complex in heart development, Exp. Biol. Med. (Maywood), 2011, vol. 236, no. 7, pp. 816–822.

    Article  CAS  Google Scholar 

  19. Palchevska, L.L., Andrejeva, A.O., Macewicz, L.L., Piven, O.O., and Lukash, L.L., Embryonically induced β-catenin haploinsufficiency attenuated postnatal heart development and caused the violation of foetal genes program expression, Biopolym. Cell, 2013, vol. 29, no. 1, pp. 124–130.

    Article  CAS  Google Scholar 

  20. Gardner, L., Lee, L., and Dang, C., The c-Myc oncogenic transcription factor, in Encyclopedia of Cancer, 2002.

    Google Scholar 

  21. Halazonetis, T.D., Georgopoulos, K., Greenberg, M.E., and Leder, P., C-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities, Cell, 1988, vol. 55, no. 5, pp. 917–924.

    Article  CAS  PubMed  Google Scholar 

  22. Hess, J., Angel, P., and Schorpp-Kistner, M., AP-1 subunits: quarrel and harmony among siblings, J. Cell Sci., 2004, vol. 117, no. 25, pp. 5965–5973.

    Article  CAS  PubMed  Google Scholar 

  23. He, T.C., Sparks, A.B., Rago, C., et al., Identification of c-Myc as a target of the APC pathway, Science, 1998, vol. 281, no. 5382, pp. 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  24. Carystinos, G.D., Kandouz, M., Alaoni-Jamali, M.A., and Batist, G., Unexpected induction of the human connexin 43 promoter by the ras signaling pathway is mediated by a novel putative promoter sequence, Mol. Pharmacol., 2003, vol. 63, no. 4, pp. 821–831.

    Article  CAS  PubMed  Google Scholar 

  25. Busk, P.K., Bartkova, J., Strum, C.C., et al., Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro, Cardiovasc. Res., 2002, vol. 56, pp. 64–75.

    Article  CAS  PubMed  Google Scholar 

  26. Tamamori-Adachi, M., Ito, H., Sumrejkonchanakij, P., et al., Critical role of cyclin D1 nuclear import in cardiomyocyte proliferation, Circ. Res., 2003, vol. 92, no. 1, p. 92.

    Article  Google Scholar 

  27. Shtutman, M., Zhurinsky, J., Simcha, I., et al., The cyclin D1 gene is a target of the beta-catenin LEF-1 pathway, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 96, pp. 5522–5527.

    Article  Google Scholar 

  28. Kenney, A.M. and Rowitch, D.H., Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors, Mol. Cell Biol., 2000, vol. 20, no. 23, pp. 9055–9067.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Cadigan, K.M. and Waterman, M.L., TCF/LEFs and Wnt signaling in the nucleus, Cold Spring Harb. Persp. Biol., 2012, vol. 4, no. 11, p. a007906.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Piven.

Additional information

Original Ukrainian Text © O.L. Palchevska, V.V. Balatskii, A.O. Andrejeva, L.L. Macewicz, O.O. Piven, L.L. Lukash, 2015, published in Tsitologiya i Genetika, 2015, Vol. 49, No. 1, pp. 10–17.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palchevska, O.L., Balatskii, V.V., Andrejeva, A.O. et al. Study of the canonical Wnt signaling activity in animals of different ages in the conditions of embryonic cardiac-specific β-catenin ablation. Cytol. Genet. 49, 6–11 (2015). https://doi.org/10.3103/S0095452715010107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715010107

Keywords

Navigation