Skip to main content
Log in

Effect of insulin-like growth factor transgene on wound healing in mice with streptozotocin-induced diabetes

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Insulin-like growth factor 1 (IGF-1) is one of the main factors that can affect the condition and rate of skin regeneration process. Morphological and molecular biological investigations were carried out to study skin wounds of wild-type FVB mice and transgenic K14/mIGF-1 animals with streptozotocin-induced diabetes. Increases in the IGF-1 expression, the area and thickness of regenerated epithelium, and number of Mac-1+ cells per wound were shown in transgenic animals compared with wild-type animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. auf dem Keller, U., Kumin, A., Braun, S., and Werner, S., Reactive oxygen species and their detoxification in healing skin wounds, J. Invest. Dermatol. Symp. Proc., 2006, vol. 11, no. 1, pp. 106–111.

    Article  Google Scholar 

  2. Martin, P., Wound healing-aiming for perfect skin regeneration, Science, 1997, vol. 276, no. 5309, pp. 75–81.

    Article  CAS  PubMed  Google Scholar 

  3. Grazul-Bilska, A., Johnson, M., Bilski, J., et al., Wound healing: the role of growth factors, Drugs Today, 2003, vol. 39, no. 10, pp. 787–795.

    Article  CAS  PubMed  Google Scholar 

  4. Cummings, D. and Merriam, G., Growth hormone therapy in adults, Ann. Rev. Med., 2003, vol. 54, pp. 513–533.

    Article  CAS  PubMed  Google Scholar 

  5. Green, H., Morikawa, M., and Nixon, T., A dual effector theory of growth-hormone action, Differentiation, 1985, vol. 29, no. 3, pp. 195–198.

    Article  CAS  PubMed  Google Scholar 

  6. Eming, S., Snow, R., Yarmush, M., and Morgan, J., Targeted expression of insulin-like growth factor to human keratinocytes: modification of the autocrine control of keratinocyte proliferation, J. Invest. Dermatol., 1996, vol. 107, no. 1, pp. 113–120.

    Article  CAS  PubMed  Google Scholar 

  7. Barreca, A., De Luca, M., Del Monte, P., et al., In vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factors, J. Cell Physiol., 1992, vol. 151, no. 2, pp. 262–268.

    Article  CAS  PubMed  Google Scholar 

  8. Blenis, J., Signal transduction via the map kinases: proceed at your own risk, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 13, pp. 5889–5892.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Guler, H., Zapf, J., Scheiwiller, E., and Froesch, E., Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats, Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, no. 13, pp. 4889–4893.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tavakkol, A., Elder, J., Griffiths, C., et al., Expression of growth hormone receptor, insulin-like growth factor I (IGF-1) and IGF-1 receptor mRNA and proteins in human skin, J. Invest. Dermatol., 1992, vol. 99, no. 3, pp. 343–349.

    Article  CAS  PubMed  Google Scholar 

  11. Johansson, O. and Liu, P.O., Gamma-melanocyte stimulating hormone (Γ-MSH)-like immunoreactivity is present in certain normal human keratinocytes, Exp. Dermatol., 1993, vol. 2, no. 5, pp. 204–208.

    Article  CAS  PubMed  Google Scholar 

  12. Philpott, M., Sanders, D., and Kealey, T., Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-1 at physiologic concentrations in an important regulator of hair follicle growth in vitro, J. Invest. Dermatol., 1994, vol. 102, no. 6, pp. 857–861.

    Article  CAS  PubMed  Google Scholar 

  13. Rudman, S., Philpott, M., Thomas, G., and Kealey, T., The role of IGF-1 in human skin and its appendages: morphogen as well as mitogen? J. Invest. Dermatol., 1997, vol. 109, no. 6, pp. 770–777.

    Article  CAS  PubMed  Google Scholar 

  14. Blakytny, R., Jude, E.B., Martin, GibsonJ., et al., Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers, J. Pathol., 2000, vol. 190, no. 5, pp. 589–594.

    Article  CAS  PubMed  Google Scholar 

  15. Wetzler, C., Kampfer, H., Stallmeyer, B., et al., Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair, J. Invest. Dermatol., 2000, vol. 155, p. 245–253.

    Article  Google Scholar 

  16. Semenova, E., Koegel, H., Hasse, S., et al., Overexpression of mIGF-1 in keratinocytes improves wound healing and accelerates hair follicle formation and cycling in mice, Am. J. Pathol., 2008, vol. 173, no. 5, pp. 1295–1310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Werner, S. and Grose, R., Regulation of wound healing by growth factors and cytokines, Physiol. Rev., 2003, vol. 83, no. 3, pp. 835–870.

    CAS  PubMed  Google Scholar 

  18. Brown, D.L., Kane, C.D., Chernausek, S.D., and Greenhalgh, D.G., Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice, Am. J. Pathol., 1997, vol. 151, no. 3, pp. 715–724.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Telasky, C., Tredget, E.E., Shen, Q., et al., IFN-2b suppresses the fibrogenic effects of insulin-like growth factor-1 in dermal fibroblasts, J. Interferon Cytokine Res., 1998, vol. 18, no. 8, pp. 571–577.

    Article  CAS  PubMed  Google Scholar 

  20. Neely, E.K., Morhenn, V.B., Hintz, R.H., et al., Insulin-like growth factors are mitogenic for human keratinocytes and a squamous cell carcinoma, J. Invest. Dermatol., 1991, vol. 96, no. 1, pp. 104–110.

    Article  CAS  PubMed  Google Scholar 

  21. Gartner, M.H., Benson, J.D., and Caldwell, M.D., Insulin-like growth factors I and II expression in the healing wound, J. Surg. Res., 1992, vol. 52, no. 4, pp. 389–394.

    Article  CAS  PubMed  Google Scholar 

  22. Ando, Y. and Jensen, P.J., Epidermal growth factor and insulin-like growth factor I enhance keratinocyte migration, J. Invest. Dermatol., 1993, vol. 100, no. 5, pp. 633–639.

    Article  CAS  PubMed  Google Scholar 

  23. Bhora, F.Y., Dunkin, B.J., Batzri, S., et al., Effect of growth factors on cell proliferation and epithelialization in human skin, J. Surg. Res., 1995, vol. 59, no. 2, pp. 236–244.

    Article  CAS  PubMed  Google Scholar 

  24. Roesel, J.F. and Nanney, L.B., Assessment of differential cytokine effects on angiogenesis using an in vivo model of cutaneous wound repair, J. Surf. Res., 1995, vol. 58, no. 4, pp. 449–459.

    Article  CAS  Google Scholar 

  25. Ghahary, A., Tredget, E.E., and Shen, Q., Insulin-like growth factor-II/mannose 6 phosphate receptors facilitate the matrix effects of latent transforming growth factor-βl released from genetically modified keratinocytes in a fibroblast/keratinocyte co-culture system, J. Cell Physiol., 1999, vol. 180, no. 1, pp. 61–70.

    Article  CAS  PubMed  Google Scholar 

  26. Bitar, M.S., Pilcher, C.W., Khan, I., and Waldbillig, R.J., Diabetes-induced suppression of IGF-1 and its receptor mRNA levels in rat superior cervical ganglia, Diabetes Res. Clin. Pract., 1997, vol. 38, no. 2, pp. 73–80.

    Article  CAS  PubMed  Google Scholar 

  27. Nakao-Hayashi, J., Ito, H., Kanayasu, T., et al., Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells, Atherosclerosis, 1992, vol. 92, nos. 2/3, pp. 141–149.

    Article  CAS  PubMed  Google Scholar 

  28. Nicosia, R.F., Nicosia, S.V., and Smith, M., Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro, Am. J. Pathol., 1994, vol. 145, no. 5, pp. 1023–1029.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Frystyk, J., Ledet, T., Moller, N., et al., Cardiovascular disease and insulin-like growth factor I, Circulation, 2002, vol. 106, pp. 893–895.

    Article  PubMed  Google Scholar 

  30. Sunderkotter, C., Steinbrink, K., Goebeler, M., et al., Macrophages and angiogenesis, J. Leukocyte Biol., 1994, vol. 55, no. 3, pp. 410–422.

    CAS  PubMed  Google Scholar 

  31. Dvorak, H.F., Brown, L.F., Detmar, M., and Dvorak, A.M., Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis, Am. J. Pathol., 1995, vol. 146, p. 146.

    Google Scholar 

  32. Werner, S. and Grose, R., Regulation of wound healing by growth factors and cytokines, Physiol. Rev., 2003, vol. 83, no. 3, pp. 835–870.

    CAS  PubMed  Google Scholar 

  33. Gosain, A. and DiPietro, L.A., Aging and wound healing, World J. Surg., 2004, vol. 28, no. 3, pp. 321–326.

    Article  PubMed  Google Scholar 

  34. Campos, A.C., Groth, A.K., and Branco, A.B., Assessment and nutritional aspects of wound healing, Curr. Opin. Clin. Nutr. Metab. Care, 2008, vol. 11, pp. 281–288.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Leonov.

Additional information

Original Ukrainian Text © Yu.I. Leonov, M.S. Shkumat, P.P. Klymenko, M.Yu. Hovorun, M.M. Guzyk, T.M. Kuchmerovska, I.M. Pishel, 2015, published in Tsitologiya i Genetika, 2015, Vol. 49, No. 1, pp. 26–34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, Y.I., Shkumat, M.S., Klymenko, P.P. et al. Effect of insulin-like growth factor transgene on wound healing in mice with streptozotocin-induced diabetes. Cytol. Genet. 49, 19–26 (2015). https://doi.org/10.3103/S0095452715010065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715010065

Keywords

Navigation