Skip to main content
Log in

Genetic analysis of artificial Triticinae amphidiploid Aurotica based on the glaucousness trait

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Changes in plant genomes of hybrid origin which become apparent on different levels of phenotypic manifestation of genetic and epigenetic changes are an important object of cytogenetics and molecular genetics. The changes in expression of the glaucousness trait in the artificial Triticinae amphidiploid Aurotica (AABBTT) were investigated; haplotypes of plants with the appearance of glaucous and non-glaucous genes were determined by hybridization experiments. It was suppoted that the changes in expression can be explained by (epi)mutations abolishing the efficiency of dominant alleles of orthologous series of glaucous inhibitor gene Iw. Analysis of F2 population with SSR markers specific to 2B and 2D wheat chromosomes and 2T chromosome of Aegilops mutica manifested associated inheritance of the Wms 102 and Wms 702 loci, which mapped to the short arm of chromosome 2D. The Wms 702 marker was linked to the Iw2(T) gene and can now be used to detect that gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsunewaki, K., Monosomic analysis of synthesized hexaploid wheat, Jpn. J. Genet., 1962, vol. 37, pp. 155–168.

    Article  Google Scholar 

  2. Tsunewaki, K., Comparative gene analysis of common wheat and its ancestral species. 2. Waxiness, growth habit and awnedness, Jap. J. Bot., 1966, vol. 19, pp. 175–254.

    Google Scholar 

  3. Rowland, G.G. and Kerber, E.R., Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa, Can. J. Genet. Cytol., 1974, vol. 16, pp. 137–144.

    Google Scholar 

  4. Nelson, J.C., van Deynze, A.E., Autrique, E., et al., Molecular mapping of wheat: homoeologous group 2, Genome, 1995, vol. 38, pp. 5165–524.

    Google Scholar 

  5. Tsunewaki, K. and Ebana, K., Production of nearisogenic lines of common wheat for glaucousness and genetics basis of the trait clarified by their use, Genes. Genet. Sest., 1999, vol. 74, pp. 33–41.

    Article  Google Scholar 

  6. Goncharov, N.P., Location of the gene controlling the “non-glaucousness” of vegetative organs in tetraploid wheat, Russ. J. Genet., 1994, vol. 30, pp. 1282–1283.

    Google Scholar 

  7. Simmonds, J.R., Fish, L.J., Leverington-Waite, M.A., et al., Mapping of a gene (Vir) for a non-glaucous, viridescent phenotype in bread wheat derived from Triticum dicoccoides, and its association with yield variation, Euphytica, vol. 159, 2008, pp. 333–341.

    Article  CAS  Google Scholar 

  8. Allan, R.E. and Vogel, O.A., F1 monosomic analyses involving a smooth-awn durum wheat, Wheat Inform. Serv., 1960, vol. 11, pp. 3–4.

    Google Scholar 

  9. Tsunewaki, K., Genetic studies of 6x-derivative from an 8x triticale, Can. J. Genet. Cytol., 1964, vol. 6, pp. 1–11.

    Google Scholar 

  10. Dubcovsky, J., Echaide, M., Giancola, S., et al., Seedstorage-protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat, Theor. Appl. Genet., 1997, vol. 95, pp. 1169–1180.

    Article  CAS  Google Scholar 

  11. Antonyuk, M.Z. and Ternovskaya, T.K., Plant morphology characters as markers of the chromosome homoeologous groups of triticeae, Cytol. Genet., 1997, vol. 31, no. 4, pp. 105–112.

    Google Scholar 

  12. Peng, J., Korol, A.B., Fahima, T., et al., Molecular genetic maps in wild emmer wheat, Tricitum dicoccoides: genome-wide coverage, massive negative interference, and putative quasilinkage, Genome Res., 2000, vol. 10, pp. 1509–1531.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Monneveux, P., Reynolds, M.P., Gonzalez-Santoyo, H., et al., Relationships between grain yield, flag leaf morphology, carbon isotope discrimination and ash content in irrigated wheat, J. Arg. Crop. Sci., 2004, vol. 190, pp. 395–401.

    Article  Google Scholar 

  14. Johnson, D.A., Richards, R.A., and Turner, N.C., Yield, water relations, gas exchange, and surface reflectance of near-isogenic wheat lines differing in glaucousness, Crop Sci., 1983, vol. 23, pp. 318–328.

    Article  Google Scholar 

  15. Richards, R.A., Rawson, H.M., and Johnson, D.A., Glaucousness in wheat: its development and effect on water-use efficiency gas exchange and photosynthetic tissue temperature, Aust. J. Plant Physiol., 1986, vol. 13, pp. 465–473.

    Google Scholar 

  16. Watanabe, N., Takesada, N., Shibata, Y., and Bam, T., Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitor of wheat, Euphytica, 2005, vol. 144, pp. 119–123.

    Article  CAS  Google Scholar 

  17. Ternovskaya, T.K., Reconstruction of common wheat (Triticum aestivum L.) genome for wheat genetical analysis and genes introgression, Doctoral (Biol.) Dissertation, Kyiv, 1999.

    Google Scholar 

  18. Shpylchyn, V.V. and Ternovska, T.K., Variation in glaucousness appearance in generations of amphidiploids of the Triticinae subtribe, Nauk. Zap. Nats. Univ.-Kiev.-Mogil. Akad., Biol. Ecol., 2011, vol. 119, pp. 3–7.

    Google Scholar 

  19. Ternovskaya, T.K. and Zhirov, E.G., Separation of the AABB tetraploid component out of common wheat variety Saratovskaya 29, Dokl. Vses. Akad. S-kh. Nauk im. V.I. Lenina, 1979, vol. 3, pp. 8–10.

    Google Scholar 

  20. Shpylchyn, V.V., Antonyuk, M.Z., and Ternovska, T.K., Phenotypic polymorphism for glaucousness in accessions of the Triticinae subtribe, Nauk. Zap. Nats. Univ.-Kiev.-Mogil. Akad., Biol. Ecol., 2010, vol. 106, pp. 3–8.

    Google Scholar 

  21. Liu, B., Xu, Ch., Zhao, N., et al., Rapid genomic changes in polyploidy wheat and related species: implications for genome evolution and genetic improvement, J. Genet. Gen., 2009, vol. 36, pp. 519–528.

    Article  CAS  Google Scholar 

  22. Bento, M., Gustafson, P., Viegas, W., and Silva, M., Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines, Theor. Appl. Genet., 2010, vol. 121, pp. 489–497.

    Article  PubMed  CAS  Google Scholar 

  23. Tiwari, V.K., Rawat, N., Neelam, K., et al., Random chromosome elimination in synthetic Triticum-Aegilops amphiploids leads to development of a stable partial amphiploid with high grain micro- and macronutrient content and powdery mildew resistance, Genome, 2010, vol. 53, no. 12, pp. 1053–1065.

    Article  PubMed  Google Scholar 

  24. Zhao, N., Xu, L., Zhu, B., et al., Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can by transit and incidental, Genome, 2011, vol. 54, no. 8, pp. 692–699.

    Article  PubMed  CAS  Google Scholar 

  25. Madlung, A. and Wendel, J.F., Genetic and epigenetic aspects of polyploidy evolution in plants, Cytogenet. Gen. Res., 2013, vol. 140, pp. 270–285.

    Article  CAS  Google Scholar 

  26. Bartos, J., Vlcek., choulet f. et al. intraspecific sequence comparisons reveal similar rates of noncollinear gene insertion in the B and D genomes of bread wheat, BMC Plant Biol., 2012, vol. 12, p. 155.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Sarilar, V., Palacios, P.M., Rousselet, A., et al., Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids, New Phytol., 2013, vol. 198, no. 2, pp. 593–604.

    Article  PubMed  CAS  Google Scholar 

  28. Nurray, H.G. and Thompson, W.F., Rapid isolation of high molecular weight DNA, Nucleic Acids Res., 1980, vol. 8, pp. 4321–4325.

    Article  Google Scholar 

  29. Röber, M.S., Korzun, V., Wendehake, K., et al., A microsatellite map of wheat, Genetics, 1998, pp. 2007–2023.

    Google Scholar 

  30. Glanz, S.A., Primer of Biostatistics, McGraw-Hill Publ., 2002.

    Google Scholar 

  31. Li, Y.-C., Korol, A.B., Fahima, T., and Nevo, E., Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review, Mol. Ecol., 2002, vol. 11, pp. 2453–2465.

    Article  PubMed  CAS  Google Scholar 

  32. Jones, J.K. and Majisu, B.N., The homoeology of Aegilops mutica chromosomes, Can. J. Genet. Cytol., 1968, vol. 10, no. 3, pp. 620–626.

    Google Scholar 

  33. Ohta, S., Phylogenetic relationship of Aegilops mutica Boiss. with the diploid species of concerning Aegilops triticum complex, based on the new method of genome analysis using its B-chromosomes, in Memoirs of the College of Agriculture, Kyoto Univ., Japan, 1991, vol. 137, pp. 116–120.

    Google Scholar 

  34. Ganal, M.W. and Röber, M.S., Microsatellite and SNP markers in wheat breeding, in Genomics Assisted Crop Improvement, Vol. 2: Genomic Applications in Crops, Varshney, R.K. and Tuberosa, R., Eds., Springer, 2007, pp. 1–24.

    Google Scholar 

  35. Sourdille, P., Tavaud, M., Charmet, G., and Bernard, M., Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes, Theor. Appl. Genet., 2001, vol. 103, pp. 346–352.

    Article  CAS  Google Scholar 

  36. Adonina, I.G., Salina, E.A., Pestsova, E.G., and Röber, M.S., Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome, Genome, 2005, vol. 48, pp. 959–970.

    Article  PubMed  CAS  Google Scholar 

  37. Leonova, I.N., Röber, M.S., and Nasyrova, F., The application of wheat microsatellite markers for the detection of interspecific variation in tetraploid Aegilops species with C and U genomes, Cereal Res. Communs., 2009, no. vol. 37, 3, pp. 335–343.

    Article  CAS  Google Scholar 

  38. Castillo, A. Budak, H., et al., Interspecies and intergenus transferability of barley and wheat D-genome microsatellite markers, Ann. Appl. Biol., 2010, vol. 156, pp. 347–356.

    Article  CAS  Google Scholar 

  39. Gaeta, R.T., Pires, J.Ch., Iniguez-Luy, F., et al., Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype, Plant Cell, 2007, vol. 19, pp. 3403–3417.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Liu, Sh., Zhao, Sh., Chen, F., and Xia, G., Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum, BMC Evol. Biol., 2007, vol. 7, pp. 76–85.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yuan, Zh., Liu, D., Zhang, L., et al., Mitotic illegitimate recombination is a mechanism for novel changes in high-molecular-weight glutenin subunits in wheatrye hybrids, PLoS One, 2011, vol. 6, no. 8, p. e23511.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Osborn, T.C., Pires, J.Ch., Birchler, J.A., et al., Understanding mechanisms of novel gene expression in polyploids, Trends Genet., 2003, vol. 19, no. 3, pp. 141–147.

    Article  PubMed  CAS  Google Scholar 

  43. Schranz, M.E. and Osborn, T.C., De novo variation in life-history traits and responses to growth conditions of resynthesized polyploidy Brassica napus (Brassicaceae), Am. J. Bot., 2004, vol. 91, pp. 174–183.

    Article  PubMed  Google Scholar 

  44. Adamd, K.L., Percifield, R., and Wendel, J.F., Organspecific silencing of duplicated genes in a newly synthesized cotton allotetraploid, Genetics, 2004, vol. 168, pp. 2217–2226.

    Article  Google Scholar 

  45. Zhirov, E.G. and Ternovskaya, T.K., Transfer of D genome from common wheat to durum wheat, Wheat Inform. Serv., 1988, vol. 65, pp. 4–6.

    Google Scholar 

  46. Ternovskaya, T.K. and Zhirov, E.G., Common wheat genome D. Genetic control of glaucousness, glume hairiness, and ripe ear colour, Cytol. Genet., 1993, vol. 27, pp. 15–20.

    Google Scholar 

  47. Ternovskaya, T.K., Common wheat genome d. inheritance of some spike morphology characters, Cytol. Genet., 1997, vol. 31, no. 4, pp. 11–18.

    Google Scholar 

  48. King, R.W. and von Wettstein-Knowles, P., Epicuticular waxes and regulation of ear wetting and pre-harvest sprouting in barley and wheat, Euphytica, 2000, vol. 112, pp. 157–166.

    Article  Google Scholar 

  49. Gonzalez, A. and Ayerbe, L., Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley, Euphytica, 2010, vol. 172, pp. 341–349.

    Article  Google Scholar 

  50. Merah, O., Deleens, E., Souyris, I., and Monneveux, P., Effect of glaucousness on carbon isotope discrimination and grain yield in durum wheat, J. Agron. Crop. Sci., 2000, vol. 185, pp. 259–265.

    Article  Google Scholar 

  51. Shpylchyn, V., Martynenko, V., and Ternovska, T., Genetic instability of amphidiployd miosa (Triticum durum × Aegilops comosa, AABBMtMt) resistant to powdery mildew, in Disease Risk and Food Secutiry: Proc. 13Th Int. Cereal Rust and Powdery Mildews Conf, Beijing, 2012, pp. 164–165.

    Google Scholar 

  52. Bennett, D., Izanloo, A., Edwards, J., et al., Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions, Theor. Appl. Genet., 2012, vol. 124, pp. 697–711.

    Article  PubMed  Google Scholar 

  53. Mason, R.E., Mondal, S., Beecher, F.W., et al., QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress, Euphytica, 2010, vol. 174, pp. 423–436.

    Article  Google Scholar 

  54. Börner, A., Schumann, E., Furste, A., et al., Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002, vol. 105, pp. 921–936.

    Article  PubMed  Google Scholar 

  55. Kulwal, P.L., Roy, J.K., Balyan, H.S., and Gupta, P.K., QTL maing for growth and leaf characters in bread wheat, Plant Sci., 2003, vol. 164, pp. 267–277.

    Article  CAS  Google Scholar 

  56. Larson, S.R., Kishii, M., Tsujimoto, H., et al., EST linkage maps identify 4nsl–5nsl reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci, Theor. Appl. Genet., 2012, vol. 124, pp. 189–206.

    Article  PubMed  CAS  Google Scholar 

  57. Pshenichnikova, T.A., Lapochkina, I.F., and Shchukina, L.V., The inheritance of morphological and biochemical traits introgressed into common wheat (Triticum aestivum L.) from Aegilops speltoides Tausch, Gen. Res. Crop Evol., 2007, vol. 54, pp. 287–293.

    Article  Google Scholar 

  58. Liu, Q., Ni, Zh., Peng, H., et al., Molecular mapping of a dominant non-glaucousness gene from synthetic hexaploid wheat (Triticum aestivum L.), Euphytica, 2007, vol. 155, pp. 71–78.

    Article  CAS  Google Scholar 

  59. Fu, Sh., Sun, Ch., Yang, M., et al., Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines, PLoS One, 2013, vol. 8, no. 1, p. e54057.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Tang, Z., Fu, Sh., Yan, B., et al., Unequal chromosome division and inter-genomic translocation occurred in somatic cells of wheat-rye allopolyploid, J. Plant Res., 2012, vol. 125, pp. 283–290.

    Article  PubMed  Google Scholar 

  61. Pumphrey, M., Bai, J., Laudencia-Chingcuanco, D., et al., Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat, Genetics, 2009, vol. 181, pp. 1147–1157.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Ternovska.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpylchyn, V.V., Antonyuk, M.Z. & Ternovska, T.K. Genetic analysis of artificial Triticinae amphidiploid Aurotica based on the glaucousness trait. Cytol. Genet. 48, 308–317 (2014). https://doi.org/10.3103/S0095452714050107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714050107

Keywords

Navigation