Skip to main content
Log in

Plant regeneration from hairy roots and calluses of periwinkle Vinca minor L. and foxglove purple Digitalis purpurea L.

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Plants regenerated from hairy root culture and calluses of foxglove purple and periwinkle have been obtained. It was found that organogenesis in hairy root culture occurs spontaneously on hormone-free medium but with varying efficiency. The frequency of direct shoot formation from root cultures was up to 60% in Digitalis and 3.7% in Vinca. The addition of 1 mg/L BA, 0.1 mg/L NAA, and 5% sucrose to B5 medium increases regenerative capacity of periwinkle up to 19.1%. Regenerated plants showed morphological features typically seen in Ri-transgenic plants. They include growth and plagiotropism of the root system, increased shoot formation, changed leaf morphology, and short internodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuzovkina, I. and Schneider, B., Genetically trans-formed root cultures-generation, properties and application in plant sciences, in Progress in Botany, Esser, K. et al., Eds., Berlin: Springer-Verlag, 2006, vol. 67, pp. 275–314.

    Chapter  Google Scholar 

  2. Kuzovkina, I.N. and Vdovitchenko, M.Yu., Genetically transformed roots as a model system for studying physiological and biochemical processes in intact roots, Russ. J. Plant Physiol., 2011, vol. 58, no. 5, pp. 941–948.

    Article  CAS  Google Scholar 

  3. Casanova, E., Trillas, M.I., Moysset, L., and Vainstein, A., Influence of rol genes in floriculture, Biotech. Adv., 2005, vol. 23, no. 1, pp. 3–39.

    Article  CAS  Google Scholar 

  4. Christey, M.C. and Braun, R.H., Production of hairy root cultures and transgenic plants by Agrogbacterium rhizogenes-mediated transformation, Meth. Mol. Biol., 2005, vol. 286, pp. 47–60.

    CAS  Google Scholar 

  5. Christey, M.C., Use of Ri-mediated transformation for production of transgenic plants, In Vitro Cell Dev. Biol. Plant., 2001, vol. 37, pp. 687–700.

    Article  CAS  Google Scholar 

  6. Lioshina, L.G., Bulko, O.V., and Galkin, A.P., Obtaining and characterization of callus and suspension cultures of periwinkle Vinca minor, in Factors of Experimental Evolution of Organisms, Kyiv: Logos, 2009, vol. 7, pp. 161–166.

    Google Scholar 

  7. Lioshina, L.G., Features of cultivation and growth characteristics of callus suspension culture of Digitalis prupurea L. cells, in Plant Physiology: Problems and Prospects, Kyiv: Logos, 2009, vol. 2, pp. 607–612.

    Google Scholar 

  8. Lioshina, L.G. and Bulko, O.V., Agrobacterium rhizogenes-mediated transformation and regeneration of two plant species from the family Apycynaceae Fiziol. Biokhim. Kul’tur. Roslin, 2011, vol. 43, no. 6, pp. 533–539.

    CAS  Google Scholar 

  9. Murashige, I. and Scoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.

    Article  CAS  Google Scholar 

  10. Gamborg, O.L. and Eveleigh, D.E., Culture methods and detection of glucanases in cultures of wheat and barley, Can. J. Biochem., 1968, vol. 46, no. 5, pp. 417–421.

    Article  PubMed  CAS  Google Scholar 

  11. Markovskaya, E.F., Sysoeva, M.I., Trofimova, S.A., and Kurets, V.K., Matematicheskie metody opredeleniya nekotorykh biometricheskikh pokazatelei u rastenii (Mathematical Methods for Determination of Certain Biometric Indices in Plants), Petrozavodsk, 1988.

    Google Scholar 

  12. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  13. Tanaka, N., Takao, M., and Matsumoto, T., Agrobacterium rhizogenes-mediated transformation and regeneration of Vinca moinor L., Plant Tissue Cult. Lett., 1994, vol. 11, no. 3, pp. 191–198.

    Article  CAS  Google Scholar 

  14. Feng, B., Zhao, C.H., and Wang, G.L., Transformation of Cucumis sativus by A. rhizogenes and regeneration of transformed hairy root, J. Liaoning Norm. Univ., 2000, vol. 23, pp. 171–174.

    CAS  Google Scholar 

  15. Pradel, H., Dumke-Lebmann, U., Dietrich, B., and Luckner, M., Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration, J. Plant. Physiol., 1997, vol. 151, pp. 209–215.

    Article  CAS  Google Scholar 

  16. Koga, M., Hirashima, K., and Nakahara, T., The transformation system in foxglove (Digitalis purpurea L.) using Agrobacterium rhizogenes and traits of the regenerants, Plant Biotechnol., 2000, vol. 17, no. 2, pp. 99–104.

    Article  CAS  Google Scholar 

  17. Dinkar, V.P., White, F.F., Nester, E.W., and Gordon, M.P., rolA Locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants, Genes Dev., 1988, vol. 2, pp. 688–697.

    Article  Google Scholar 

  18. Schmulling, T., Schell, J., and Spena, A., Single genes from Agrobacterium rhizogenes influence plant development, EMBO J., 1988, vol. 7, pp. 2621–2629.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Koltunow, A.M., Johnson, S.D., and Lynch, M., Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixes initiates at higher frequency, Planta, 2001, vol. 214, pp. 196–205.

    Article  PubMed  CAS  Google Scholar 

  20. Boase, M.R., Winefield, C.S., and Lill, T.A., Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf floral and vegetative phenotype, In Vitro Cell. Dev. Biol., 2004, vol. 40, pp. 46–50.

    Article  CAS  Google Scholar 

  21. Spena, A., Schmiilling, T., Konez, C., and Schell, J.S., Independent and synergistic activity of rol A, B and C loci in stimulation of abnormal growth in plants, EMBO J., 1987, vol. 13, no. 13, pp. 3891–3899.

    Google Scholar 

  22. Binns, A.N. and Costantino, P., The Agrobacterium oncogenes, in The Rhizobiaceae, Dordrecht: Kluwer Press, 1998, pp. 251–266.

    Chapter  Google Scholar 

  23. Meyer, A.D., Tempé, J., and Costantino, Hairy root: a molecular overview. Functional analysis of Agrobacterium rhizogenes T-DNA genes, in Plant-Microbe Interactions, St. Paul: APS Press, 2000, pp. 93–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Lioshina.

Additional information

Original Russian Text © L.G. Lioshina, O.V. Bulko, 2014, published in Tsitologiya i Genetika, 2014, Vol. 48, No. 5, pp. 36–42.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lioshina, L.G., Bulko, O.V. Plant regeneration from hairy roots and calluses of periwinkle Vinca minor L. and foxglove purple Digitalis purpurea L.. Cytol. Genet. 48, 302–307 (2014). https://doi.org/10.3103/S009545271405003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271405003X

Keywords

Navigation