Skip to main content
Log in

Influence low-intensity laser irradiation on the ultrastructural organization of loach embryo cells

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The ultrastructural organization of loach embryo cells (Misgurnus fossilis L.) at the stage of the first and the tenth embryo divisions was investigated under the influence of low intensity helium-neon laser irradiation of 5 min exposure. It was determined that the effect of laser irradiation led to ultrastructural changes: the shape of mitochondria and multivesicular bodies changes. The obtained results explain the possible mechanism of influence of low-intensity laser irradiation at the cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moshkovska, T. and Mayberry, J., It is time to test low level laser therapy in Great Britain, Postgrad. Med. J., 2005, vol. 81, no. 957, pp. 436–441.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Gavish, L., Perez, L., and Gertz, S.D., Low-level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells, Lasers Surg. Med., 2006, vol. 38, no. 8, pp. 779–786.

    Article  PubMed  Google Scholar 

  3. Snyder, S.K., Byrnes, K.R., Borke, R.C., et al., Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment, Lasers Surg. Med., 2002, vol. 31, no. 3, pp. 216–222.

    Article  PubMed  Google Scholar 

  4. Karu, T.I. and Kolyakov, S.F., Exact action spectra for cellular responses relevant to phototherapy, Photomed. Laser Surg., 2005, vol. 23, no. 4, pp. 355–361.

    Article  CAS  PubMed  Google Scholar 

  5. Kipshidze, N., Nikolaychik, V., Keelan, M.H., et al., Low-power helium-neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro, Lasers Surg. Meg., 2001, vol. 28, no. 364.

    Google Scholar 

  6. Byrnes, K.R., Wu, X., Waynant, R.W., et al., Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro, Lasers Surg. Med., 2005, vol. 37, no. 2, pp. 161–171.

    Article  PubMed  Google Scholar 

  7. Kreisler, M., Christoffers, A.B., Al-Haj, H., et al., Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts, Lasers Surg. Med., 2002, vol. 30, no. 5, pp. 365–369.

    Article  PubMed  Google Scholar 

  8. Stein, A., Benayahu, D., Maltz, L., and Oron, U., Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro, Photomed. Laser Surg., 2005, vol. 23, no. 2, pp. 161–166.

    Article  CAS  PubMed  Google Scholar 

  9. Souza, S.C., Munin, E., Alves, L.P., et al., Low power laser radiation at 685 nm stimulates stem-cell proliferation rate in dugesia Tigesia tigrina during regeneration, J. Photochem. Photobiol. B, 2005, vol. 80, no. 3, pp. 203–207.

    Article  PubMed  Google Scholar 

  10. Tuby, H., Maltz, L., and Oron, U., Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture, Lasers Surg. Med., 2007, vol. 39, no. 4, pp. 373–378.

    Article  PubMed  Google Scholar 

  11. Manteifel, V.M., Karu, T.J., and Andreichuk, T.V., A comparative study of chromatin from lymphocyte nuclei upon activation of transcription by irradiation from an He-Ne-laser or phytohemagglutinin, Mol. Biol., 1992, vol. 5, pp. 1054–1062.

    Google Scholar 

  12. Dube, A., Bauer, E., and Bock, C., He-Ne laser irradiation protects B-lymphoblasts from UVA-induced DNA damage, Radiat. Environ. Biophys., 2001, vol. 1, pp. 77–82.

    Article  Google Scholar 

  13. Vacca, R.A. and Marra, E., Passarella increase in cytosolic and mitochondrial protein synthesis in rat hepatocytes irradiated in vitro by He-Ne laser, J. Photochem. Photobiol. B, 1996, vol. 3, pp. 197–202.

    Article  Google Scholar 

  14. Chudnovskii, V.M., Leonova, G.N., Skopinov, S.A., et al., Biologicheskie modeli i fizicheskie mekhanizmy lazernoi terapii (Biological Models and Physical Mechanisms of Laser Therapy), Vladivostok: Dal’nauka, 2002.

    Google Scholar 

  15. Karu, T., in Low-Power Laser Therapy, New York: CRC Press, 2003, pp. 4825–4841.

    Google Scholar 

  16. Goida, O.A., Biofizicheskie aspekty rannego ontogeneza zhivotnykh (Biophysical Aspects of Early Ontogenesis of Animals), Kyiv: Naukova Dumka, 1993.

    Google Scholar 

  17. Bura, M., Mandzinets’, S., Temnik, M., et al., Development of embryos and larvae of loach Misgurnus fossilis L. under exposure to low-intensity helium-neon light, Visn. Lviv. Univ., Ser. Biol., 2010, vol. 54, pp. 59–68.

    Google Scholar 

  18. Neifakh, A.A., Molekulyarnaya biologiya protsessov razvitiya (Molecular Biology of Development Processes), Moscow: Nauka, 1977.

    Google Scholar 

  19. Reynolds, E.S., The use of lead citrate at high pH as an electronopaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tselevich, M.V., Kulachkovsky, O.P., and Sanagursky, D.I., Ultrastructural changes in loach (Misgurnus fossilis L.) embryos under borocin treatment, Cytol. Genet., 2004, vol. 38, no. 6, pp. 23–27.

    Google Scholar 

  21. Tselevich, M.V., Features of the ultrastructure of loach embryos under the influence of norfloxacin, Cytol. Genet., 2008, vol. 42, no. 2, pp. 96–100.

    Article  Google Scholar 

  22. Mandzynets, S.M., Kulachkovskii, O.R., and Bura, M.V., Effect of avermectin on the ultrastructural characteristics of loach embryos, Cytol. Genet., 2011, vol. 46, no. 5, pp. 318–323.

    Article  Google Scholar 

  23. Vladimirov, Yu.A., Three hypotheses about the mechanism of action of laser radiation on cells and human body, in Efferentnaya meditsina: Sb. statei (Efferent Medicine: Collected Papers), Moscow: Inst. Biomed. Khim., 1994, pp. 51–67.

    Google Scholar 

  24. Golovchak, N.P., Tarnovs’ka, A.V., Bura, M.V., et al., Prooxidant-antioxidant homeostasis of eel embryos under the influence of low-intensity laser irradiation, Fizika Zhivogo, 2009, vol. 17, no. 1, pp. 76–81.

    Google Scholar 

  25. Romanyuk, M.S., Mandzinets’, S.M., Bura, M.V., and Sanagurs’kii, D.I., Effect of low-intensity laser radiation of varying exposure on the activity of Na,K-ATPase of loach embryos, Fotobiol. Fotomed., 2011, no. 1, pp. 76–83.

    Google Scholar 

  26. Manteifel’, V.M., D’yachkova, L.N., and Karu, T.I., Morphometric study of yeast cells of Torulopsis sphaerica after He-Ne-laser irradiation, Tsitologiya, 2002, no. 12, pp. 1205–1211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Romaniuk.

Additional information

Original Ukrainian Text © M.S. Romaniuk, M.V. Bura, S.M. Mandzynets, O.R. Kulachkovsky, D.I. Sanagursky, 2014, published in Tsitologiya i Genetika, 2014, Vol. 48, No. 3, pp. 43–47.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romaniuk, M.S., Bura, M.V., Mandzynets, S.M. et al. Influence low-intensity laser irradiation on the ultrastructural organization of loach embryo cells. Cytol. Genet. 48, 171–174 (2014). https://doi.org/10.3103/S0095452714030098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714030098

Keywords

Navigation