Skip to main content
Log in

Induced polyploidization in Brassica campestris L. (Brassicaceae)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Present experimental design has been made up to obtain crop with higher ploidy level via synthetic polyploidization. Since ploidy manipulation is generally associated with the obtainment of some increased enviable traits of the crop and also provides them greater adaptability to unfavorable or harsh circumstances as compared to its diploids counterparts. Thus, herein present research autotetraploids of Brassica campestris L. have been lucratively achieved by the application of colchicine. Two methods of treatment were utilized i.e. seed treatment and seedling treatment. No polyploidy could be obtained through seed treatment while seedling treatment responded well towards polyploidy. However, the status of autotetraploidy has been confirmed by cytomorphological investigations of treated plants as against its diploids counterparts. For the purpose, morphological parameters such as increased stomata size, pollen diameter, flower size, reproductive organs whereas reduction in plant height, leaf length, leaf breadth, stomata frequency, number of flowers/inflorescence etc. were appraised. Further, cytological observations were made that had clearly revealed the doubling of genome in the autotetraploids as compared to diploids. Meanwhile, pollen fertility and size of pollen grains were evaluated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J.S., Oginuma, K., and Tobe, H., Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae): a pathway to infraspecific polyploidy, J. Plant Res., 2009, vol. 122, pp. 439–444.

    Article  PubMed  Google Scholar 

  2. Adam, K.L. and Wendel, J.F., Polyploidy and genome evolution in plants, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 135–141.

    Article  CAS  Google Scholar 

  3. Masterson, J., Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms, Science, 1994, vol. 264, pp. 421–423.

    Article  PubMed  CAS  Google Scholar 

  4. Ascough, G.D., Erwin, J.E., and Staden, J.V., Effectiveness of colchicine and oryzalinat inducing polyploidy in Watsonis lepida N.E. Brown, Hort. Sci., 2008, vol. 43, pp. 2248–2251.

    Google Scholar 

  5. Yamaguchi, M., Basic studies on the flower color breeding of carnation (Dianthus caryophyllus L.), Bull. F. Hort. Minmikyushu Univ., 1989, vol. 19, pp. 1–78.

    Google Scholar 

  6. Takamura, T. and Miyajima, I., Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics, Sci. Hod., 1996, vol. 65, pp. 305–312.

    CAS  Google Scholar 

  7. Madon, M., Clyde, M.M., Hashim, H., et al., Polyploidy induction of oil palm through colchicinens and oryzalin treatments, J. Oil Palm Res., 2005, vol. 17, pp. 110–123.

    CAS  Google Scholar 

  8. Rey, H.Y., Sansberro, P.A., Collavino, M.M., et al., Conchicince, trifluralin, and otyzalin promoted development of somatic embryos in Ilex paraguartinsis (Aquifoliaceae), Euphytica, 2002, vol. 123, pp. 45–46.

    Article  Google Scholar 

  9. Pickens, X.A., Cheng, Z.M., and Kania, S.A., Effect of colchicine and otyzalin on callus and adventitious shoot formation of Euphorbia pulcherrirna winter rose, Flort. Sci., 2006, vol. 41, pp. 1651–3655.

    CAS  Google Scholar 

  10. Dhooghe, E., Denis, S., Eeckhaut, I., et al., In vitro induction of tetraploids in ornamental Ranunculus, Euphyiica, 2009, vol. 168, pp. 33–40.

    Article  CAS  Google Scholar 

  11. Levan, A., The effect of colchicine on root mitosis in Allium, Hereditas, 1939, vol. 24, no. 4, pp. 471–486.

    Article  Google Scholar 

  12. Yemets, A.I. and Blume, Ya.B., Progress in plant polyploidization based on antimicrotubular drugs, Open Hort. J., 2008, vol. 1, pp. 15–20.

    Article  CAS  Google Scholar 

  13. Kauser, R., Athar, H.R., and Ashraf, M., Chlorophyll florescence: a potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.), Pak. J. Bot., 2006, vol. 38, no. 5, pp. 1501–1509.

    Google Scholar 

  14. Cardoza, V. and Stewart, C.N., Jr., Brassica biotechnology: progress in cellular and molecular biology, In Vitro Cell. Dev. Biol. Plant, 2004, vol. 40, pp. 542–551.

    Article  CAS  Google Scholar 

  15. Evans, D.A. and Reed, S.M., Cytogenetic techniques, in Plant Tissue Culture: Methods and Application in Agriculture, Thope, T.A., Ed., New York: Academic, 1981, pp. 213–240.

    Google Scholar 

  16. Adaniya, S. and Shira, D., In vitro induction of tetraploid ginger (Zingiber officinali Roscoe) and its pollen fertility and germinability, Sci. Hort., 2001, vol. 88, pp. 277–287.

    Article  Google Scholar 

  17. Kermani, M.J., Sarsan, V., Roberts, A.V., et al., Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability, Theor. Appl. Genet., 2003, vol. 107, pp. 1195–1200.

    Article  PubMed  CAS  Google Scholar 

  18. Shao, J., Chen, C., and Deng, X., In vitro induction of tetraploid in pomegranate (Punica granatum), Plant. Cell. Tissue Org. Cult., 2003, vol. 75, pp. 241–246.

    Article  CAS  Google Scholar 

  19. Swanson, C.P., Cytology and Cytogenetics, New Jersey, 1957.

    Google Scholar 

  20. Joshi, P. and Verma, R.C., High frequency production of colchicine induced autotetraploids in faba bean (Vicia faba L.), Cytologia, 2004, vol. 69, no. 2, pp. 141–147.

    Article  Google Scholar 

  21. Vainola, A., Polyploidization and early screening of rhododendron hybrids, Euphytica, 2000, vol. 112, pp. 239–244.

    Article  Google Scholar 

  22. Butterfass, T.H., A nucleotypic control of chloroplast reproduction, Protoplasma, 1983, vol. 118, pp. 71–74.

    Article  Google Scholar 

  23. Stebbins, G.L., Chromosomal Evolution in Higher Plants, London, 1971.

    Google Scholar 

  24. Vamosi, J.C., Goring, S.J., Kennedy, B.F., et al., Pollination, floral display, and the ecological correlates of polyploidy, Func. Ecosyst. Commun., 2007, vol. 1, no. 1, pp. 1–9.

    Google Scholar 

  25. Van Huylenbroeck, J.M., de Riek, J., and de Loose, M., Genetic relationships among Hibiscus syriacus, Hibiscus sinosyriacus and Hibiscus paramutabilis revealed by AFLP, morphology, and ploidy analysis, Genet. Res. Crop Evol., 2000, vol. 47, pp. 335–343.

    Article  Google Scholar 

  26. Husband, B.C. and Schemske, D.W., Ecological mechanisms of reproductive isolation between diploid and tetraploid chamerion angustifolium (Onagraceae), J. Ecol., 2000, vol. 88, pp. 689–701.

    Article  Google Scholar 

  27. Medail, F., Ziman, S., Boscaiu, O., et al., Comparative analysis of biological and ecological differentiation of Anemone palmate L. (Ranunculaceae) in the Western Mediterranean (France and Spain): an assessment of rarity and population persistence, Biol. J. Linn. Soc., 2002, vol. 140, pp. 95–114.

    Article  Google Scholar 

  28. Tan, G.Y. and Dun, G.M., Relationship of stomatal length and frequency and pollen grain diameter to ploidy level in Bronus inermis Leyss, Crop Sci., 1973, vol. 13, pp. 332–334.

    Article  Google Scholar 

  29. Przywara, L., Pandey, K.K., and Sanders, P.M., Length of stomata as an indicator of ploidy level in Actinidia deliciosa, New Zealand J. Bot., 1988, vol. 26, pp. 179–182.

    Article  Google Scholar 

  30. De Jesus-Gonzalez, L. and Weathers, P.J., Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids, Plant Cell Rep., 2003, vol. 21, pp. 809–813.

    PubMed  Google Scholar 

  31. Chauvin, J.E., Souchet, C., Dantec, J.P., and Ellissãche, D., Chromosome doubling of 2x Solanum species by oryzalin: method development and comparison with spontaneous chromosome doubling in vitro, Plant Cell Tissue Organ Cult., 2003, vol. 73, pp. 65–73.

    Article  CAS  Google Scholar 

  32. Cohen, D. and Yao, J.L., In vitro chromosome doubling of nine Zantedeschia cultivars, Plant Cell Tissue Organ Cult., 1996, vol. 47, pp. 43–49.

    Article  Google Scholar 

  33. Jaskani, M.J., Kwon, S.W., and Kim, D.H., Flow cytometry of DNA contents of colchicine treated watermelon as a ploidy screening method at m1 stage, Pak. J. Bot., 2005, vol. 37, no. 3, pp. 685–696.

    Google Scholar 

  34. Stebbins, G.L., Polyploidy in plants: unsolved problems and prospects, in Polyploidy: Biological Relevance, Lewis, W.H., Ed., New York: Plenum Press, 1980, pp. 495–520.

    Chapter  Google Scholar 

  35. Lewis, W.H., Polyploidy in species populations, in Polyploidy: Biological Relevance, Lewis, W.H., Ed., New York: Plenum, 1980, pp. 103–144.

    Chapter  Google Scholar 

  36. Talukdar, D., Cytogenetic characterization of induced autotetraploids in grass pea (Lathyrus sativus L.), Caryologia, 2010, vol. 63, no. 1, pp. 62–72.

    Article  Google Scholar 

  37. Habib, A., Shahida, H., and Khan, A., Genome biology of the cultivated Brassica, Quarterly Sci. Vision, (Jul–Dec, 2003) and 3–4 (Jan–Jun, 2004), vol. 9, pp. 1–2.

  38. Riley, R. and Chapman, V., Genetic control of the cytologically diploid behaviour of hexaploid wheat, Nature, 1958, vol. 182, pp. 713–715.

    Article  Google Scholar 

  39. Marzougui, N., Boubaya, A., Thabti, I., et al., Polyploidy induction of Tunisian Trigonella foenumgreaum L. populations, Afr. J. Biotechnol., 2011, vol. 10, no. 43, pp. 8570–8577.

    CAS  Google Scholar 

  40. Kumar, G. and Yadav, R.S., Impact of genome doubling on cytomorphological characters of Sesamum indicum L. (Pedaliceae), Chromosome Bot., 2010, vol. 5, no. 2, pp. 43–47.

    Article  Google Scholar 

  41. Biswas, S.C., Cytogenetic evaluation of induced variations through mutations and polyploidy in Lathyrus sativus L. and varietal diversities, Ph.D. Thesis, Kalyani, India, 1998.

    Google Scholar 

  42. Soltis, D.E., Soltis, P.S., and Tate, J.A., Advances in the study of polyploidy since plant speciation, New Phytol., 2003, vol. 161, pp. 173–191.

    Article  CAS  Google Scholar 

  43. Wendel, J.F., Genome evolution of polyploids, Plant. Mol. Biol., 2000, vol. 42, pp. 225–249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dwivedi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Dwivedi, K. Induced polyploidization in Brassica campestris L. (Brassicaceae). Cytol. Genet. 48, 103–110 (2014). https://doi.org/10.3103/S0095452714020066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714020066

Keywords

Navigation