Skip to main content
Log in

Comparative analysis of the karyotype of new human cell line 4BL at long-term cultivation: Ploidy of the chromosomal set

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Long-term cultivation of human cells, including stem cells, can lead to essential transformations of the karyotype and genetic instability. The aim of this research was a comparative cytogenetic study of the karyotype of new human stem cell line 4BL at 160 and 205 passages. During a standard cytogenetic examination, the nullisomy and monosomy of chromosomes 10 and 13, monosomy of chromosomes 4, 8, 11, 15, 17, 21, and X; and t(1, 11), t (5, 15), t(12, 15), and t(16, 21) were observed; also, six regular marker chromosomes were detected. At 160 and 205 passages, the modal class of the karyotype was 42–43 chromosomes. While passaging increased frequency of polyploidy cells (from 2.8 to 36%), disappearance of nearhaploid cells (22.1% at the 160th passage) and a decreased level of early division of chromatids (from 5 to 1.5%) were observed. We assume the stabilization of the karyotype of cell line 4BL at 205 passages and consider that it is necessary to conduct an additional molecular and cytogenetic study for the objective identification of the number of chromosomes of the modal class, as well as the number of chromosomal anomalies, and for forecasting the direction of the karyotype evolution of human cells 4BL in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Gaebel, R., Furlani, D., Sorg, H., et al., Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration, PLoS One, 2011, vol. 6, no. 2, p. el5652.

    Article  Google Scholar 

  2. Wagner, W., Bork, S., Lepperdinger, G., et al., How to track cellular aging of mesenchymal stromal cells? Aging (Albany, New York), 2010, vol. 2, no. 4, pp. 224–230.

    PubMed  CAS  Google Scholar 

  3. Peters, R., Wolf, M.J., Broek, M., et al., Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture, PLoS One, 2010, vol. 5, no. 12, p. e15689.

    Article  PubMed  Google Scholar 

  4. Wagner, W., Ho, A.D., and Zenke, M., Different facets of aging in human mesenchymal stem cells, Tissue Engin., 2010, vol. 16, no. 4, pp. 445–453.

    Article  Google Scholar 

  5. Furlani, D., Li, W., Pittermann, E., Klopsch, C., et al., A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart, Cell Transplant., 2009, vol. 18, no. 3, pp. 319–331.

    Article  PubMed  Google Scholar 

  6. Kim, J., Kang, J.W., Park, J.H., et al., Biological characterization of long-term cultured human mesenchymal stem cells, Arch. Pharm. Res., 2009, vol. 32, no. 1, pp. 117–126.

    Article  PubMed  CAS  Google Scholar 

  7. Bernardo, M.E., Zaffaroni, N., Novara, F., et al., Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms, Cancer Res., 2007, vol. 67, no. 19, pp. 9142–9149.

    Article  PubMed  CAS  Google Scholar 

  8. Maitra, A., Arking, D.E., Shivapurkar, N., et al., Genomic alterations in cultured human embryonic stem cells, Nat. Genet., 2005, vol. 37, no. 10, pp. 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  9. Longo, L., Bygrave, A., Grosvels, F.G., and Pandolfi, P.P., The chromosome make up of mouse embryonic stem cell is predictive of somatic and germ cell chimerism, Transgenic Res., 1997, vol. 6, pp. 321–328.

    Article  PubMed  CAS  Google Scholar 

  10. Qin, Y., Ji, H., Wu, Y., and Liu, H., Chromosomal instability of murine adipose tissue-derived mesenchymal stem cells in long-term culture and development of cloned embryos, Cloning Stem Cells, 2009, vol. 11, no. 3, pp. 445–452.

    Article  PubMed  CAS  Google Scholar 

  11. Iatsyshyna, A.P., Genetic Instability of Mammalian Cells in vitro, Visn. Ukr. Tvar. Genet. Selekts., 2010, vol. 8, no. 1, pp. 165–178.

    Google Scholar 

  12. Lukash, L.L., Regulation of genome variability of mammalian somatic cells by exogenous biological factors, Biopolym. Cell, 2004, vol. 20, nos. 1/2, pp. 93–105.

    Article  CAS  Google Scholar 

  13. Lukash, L.L., Iatsyshyna, A.P., Kushniruk, V.O., and Pidpala, O.V., Reprogramming of somatic cells of adult humans, in Factors of Experimental Evolution of Organisms, Kyiv: Logos, 2011, pp. 493–498.

    Google Scholar 

  14. Freshni, R.Ya., Kul’tura zhivotnykh kletok: Prakt. rukovodstvo (Animal Cell Culture: A Practical Guide), Moscow: Binom, 2010.

    Google Scholar 

  15. Hungerford, D.A., Leucocytes culture from small inocula of whole blood and the preparation of metaphase chromosomes by treatment with hypotonic KCl, Stain. Technol., 1965, vol. 10, no. 6, pp. 333–338.

    Google Scholar 

  16. Seabright, M.A., A rapid banding technique for human chromosomes, Lancet, 1971, vol. 2, pp. 971–972.

    Article  PubMed  CAS  Google Scholar 

  17. Shaffer, L.G., Slovak, M.L., and Campbell, L.J., ISCN 2009: An International System for Human Cytogenetic Nomenclature, Basel: Karger, 2009.

    Google Scholar 

  18. Akopyan, H., Sirenko, A., Sedneva, I., et al., Cytogenetic assay in apoptosis investigations, Folia Histochem. Cytobiol., 2001, vol. 39,suppl. 2, pp. 158–160.

    PubMed  Google Scholar 

  19. Yih, L.H. and Lee, T.C., Induction of C-anaphase and diplochromosome through dysregulation of spindle assembly checkpoint by sodium arsenite in human fibroblasts, Cancer Res., 2003, vol. 63, no. 20, pp. 6680–6688.

    PubMed  CAS  Google Scholar 

  20. Shinawi, M. and Cheung, S.W., The array CGH and clinical applications, Drug Discov. Today, 2008, vol. 13, nos. 17/18, pp. 760–770.

    Article  PubMed  CAS  Google Scholar 

  21. Iatsyshyna, A.P., Pidpala, O.V., Kochubei, T.P., and Lukash, L.L., Cytogenetic analysis of G1 spontaneously immortalized mouse cells, Biopolym. Cell, 2006, vol. 22, no. 4, pp. 299–306.

    Article  Google Scholar 

  22. Glazko, T.T., Iatsyshyna, A.P., Pidpala, O.V., and Lukash, L.L., Succession of cytogenetic characteristics in passages of G1 mouse embryonic germ cells, Klet. Transplantol. Tkan. Inzhener., 2007, vol. 2, no. 3, pp. 47–50.

    Google Scholar 

  23. Lee, H.O., Davidson, J.M., and Duronio, R.J., Endoreplication: polyploidy with purpose, Genes Dev., 2009, vol. 23, no. 21, pp. 2461–2477.

    Article  PubMed  CAS  Google Scholar 

  24. Clouston, H.J., Herbert, M., Fenwic, J., et al., Cytogenetic analysis of human blastocysts, Pren. Diagn., 2002, vol. 22, no. 12, pp. 1143–1152.

    Article  Google Scholar 

  25. Viuff, D., Palsgaard, A., Rickords, L., et al., Bovine embryos contain a higher proportion of polyploidy cells in the trophectoderm than in the embryonic disc, Mol. Reprod. Dev., 2002, vol. 62, no. 4, pp. 483–488.

    Article  PubMed  CAS  Google Scholar 

  26. Zybina, T.G. and Zybina, E.V., Cell reproduction and genome multiplication in the proliferative and invasive trophoblast cell populations of mammalian placenta, Cell. Biol. Int., 2005, vol. 29, no. 12, pp. 1071–1083.

    Article  PubMed  CAS  Google Scholar 

  27. Walen, K.N., The origin of transformed cells studies of spontaneous and induced cell transformation in cell cultures from marsupials, a snail, and human amniocytes, Cancer Genet. Cytogenet., 2002, vol. 133, no. 1, pp. 45–54.

    Article  PubMed  CAS  Google Scholar 

  28. Lozins’ka, M.R., Gnateiko, O.Z., and Gavrilyuk, Yu.I., The level of spontaneous genomic mutations in somatic human embryonic cells, Tsitol. Genet., 1994, vol. 26, no. 3, pp. 70–84.

    Google Scholar 

  29. Guleyuk, N.L., Cytogenetic characteristic of persons with disturbed menstrual function, Tsitol. Genet., 1994, vol. 26, no. 3, pp. 75–79.

    Google Scholar 

  30. Guleyuk, N.L., Zastavna, D.V., Bezkorovaina, G.M., and Akopyan, G.R., Efficiency of prenatal diagnosis of chromosomal pathologies and cytogenetic characteristics of cultured amniocytes, Eksp. Klin. Fiziol. Biokhim., 2003, no. 3, pp. 7–14.

    Google Scholar 

  31. Akopyan, G.R., Sirenko, A.G., Gnateiko, O.Z., et al., C-anaphase as a cytogenetic marker of cell apoptosis in acute lymphoblast leucosis in children, Eksp. Onkol., 1999, vol. 21, no. 2, pp. 127–132.

    Google Scholar 

  32. Akopyan, G.R., Early chromosome disjunction as an informative marker of chromosomal instability in human cells, in Advances and Problems of Genetics, Breeding, and Biotechnology, Kyiv: Logos, 2007, vol. 1, pp. 390–394.

    Google Scholar 

  33. Iatsyshyna, A.P., Kvasha, S.M., Pidpala, O.V., et al., Genetic instability of G1 mouse embryonic germ cells and disturbances of mitosis checkpoint functions in p53, Biopolym. Cell, 2007, vol. 23, no. 4, pp. 338–346.

    Article  Google Scholar 

  34. Morgunkova, A.A., Almazov, V.P., Strunina, S.M., et al., Dominant-negative inactivation of p53: the effect of the proportion between a trans-dominant inhibitor and its target, Mol. Biol. (Moscow), 2003, vol. 37, no. 1, pp. 102–109.

    Article  CAS  Google Scholar 

  35. Diaz, A., Elvira, G., and Silva, A., P53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells, Exp. Cell Res., 2009, vol. 315, no. 20, pp. 3598–3610.

    Article  Google Scholar 

  36. Zielke, N., Querings, S., Rottig, C., et al., The anaphase-promoting complex/cyclosome (APC/C) is required for replication control in endoreplication cycles, Genes Dev., 2008, vol. 22, no. 12, pp. 1690–1703.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, Z., Inuzuka, H., Fukushima, H., et al., Emerging roles of the FBW7 tumour suppressor in stem cell differentiation, EMBO Rep., 2011, vol. 13, no. 1, pp. 36–43.

    Article  PubMed  CAS  Google Scholar 

  38. Chircop, M., Malladi, C.S., Lian, A.T., et al., Calcineurin activity is required for the completion of cytokinesis, Cell Mol. Life Sci., 2010, vol. 67, no. 21, pp. 3725–3737.

    Article  PubMed  CAS  Google Scholar 

  39. Chircop, M., Sarcevic, B., Larsen, M.R., et al., Phosphorylation of dynamin II at serine-764 is associated with cytokinesis, Biochim. Biophys. Acta, 2011, vol. 1813, no. 10, pp. 1689–1699.

    Article  PubMed  CAS  Google Scholar 

  40. Rosario, C.O., Ko, M.A., Haffani, Y.Z., et al., Plk4 is required for cytokinesis and maintenance of chromosomal stability, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 15, pp. 6888–6893.

    Article  PubMed  CAS  Google Scholar 

  41. Boudolf, V., Lammens, T., Boruc, J., et al., CDKB1,1 forms a functional complex with CYCA2,3 to suppress endocycle onset, Plant Physiol., 2009, vol. 150, pp. 1482–1493.

    Article  PubMed  CAS  Google Scholar 

  42. Lordier, L., Chang, Y., Jalil, A., et al., Aurora b is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process, Blood, 2010, vol. 116, no. 13, pp. 2345–2355.

    Article  PubMed  CAS  Google Scholar 

  43. Platica, M., Ionescu, A., Ivan, E., et al., Par, a protein involved in the cell cycle, is functionally related to chromosomal passenger proteins, Int. J. Oncol., 2011, vol. 38, no. 3, pp. 777–785.

    Article  PubMed  CAS  Google Scholar 

  44. Ratnam, S. Booth, R.L., et al., Endothelial cells from human and mice with polycystic kidney disease are characterized by polyploidy and chromosome segregation defects through surviving down-regulation, Hum. Mol. Genet., 2011, vol. 20, no. 2, pp. 354–367.

    Article  PubMed  Google Scholar 

  45. Takeuchi, M., Takeuchi, K., Ozawa, Y., et al., Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture, In Vitro Cell Dev. Biol. Anim., 2009, vol. 45, nos. 5/6, pp. 290–299.

    Article  PubMed  Google Scholar 

  46. Illidge, T.M., Cragg, M.S., Fringes, B., et al., Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage, Cell Biol. Int., 2000, vol. 24, no. 9, pp. 621–633.

    Article  PubMed  CAS  Google Scholar 

  47. Walen, K.H., Bipolar genome reductional division of human near-senescent, polyploidy fibroblast cells, Cancer Genet. Cytogenet., 2007, vol. 173, no. 1, pp. 43–50.

    Article  PubMed  CAS  Google Scholar 

  48. Puig, P.E., Guilly, M.N., Bouchout, A., et al., Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy, Cell Biol. Int., 2008, vol. 32, no. 9, pp. 1031–1010.

    Article  PubMed  CAS  Google Scholar 

  49. Ianzini, F., Kosmacek, E.A., Nelson, E.S., et al., Activation of meiosis-specific genes is associated with depolyploidication of human tumor cells following radiation-induced mitotic catastrophe, Cancer Res., 2009, vol. 69, no. 6, pp. 2296–2304.

    Article  PubMed  CAS  Google Scholar 

  50. Salmina, K., Jankevics, E., Huna, A., et al., Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells, Exp. Cell Res., 2010, vol. 316, no. 13, pp. 2099–2112.

    Article  PubMed  CAS  Google Scholar 

  51. Iatsyshyna, A.P., Glazko, T.T., Kovaleva, O.A., et al., The possible ways of the diploidization of the polyploid germinative stem cells in the mouse BALB/c line, Tsitol. Genet., 2006, vol. 40, no. 6, pp. 44–49.

    Google Scholar 

  52. Lukash, L.L., Mutagenesis in the integration processes and the evolution of the nuclear genome, Biopolym. Cell, 2007, vol. 23, no. 3, pp. 172–187.

    Article  CAS  Google Scholar 

  53. King, R.W., When 2 + 2 = 5: the origins and fates of aneuploid and tetraploid cells, Biochim. Biophys. Acta, 2008, vol. 1786, no. 1, pp. 4–14.

    PubMed  CAS  Google Scholar 

  54. Mosieniak, G. and Sikora, E., Polyploidy: the link between senescence and cancer, Curr. Pharm. Des., 2010, vol. 16, no. 6, pp. 734–740.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Akopyan.

Additional information

Original Ukrainian Text © H.R. Akopian, N.L. Huleyuk, V.O. Kushniruk, D.O. Mykytenko, A.P. Yatsyshyna, L.L. Lukash, 2013, published in Tsitologiya i Genetika, 2013, Vol. 47, No. 5, pp. 55–69.

About this article

Cite this article

Akopyan, H.R., Huleyuk, N.L., Kushniruk, V.O. et al. Comparative analysis of the karyotype of new human cell line 4BL at long-term cultivation: Ploidy of the chromosomal set. Cytol. Genet. 47, 305–317 (2013). https://doi.org/10.3103/S0095452713050022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452713050022

Kewords