Skip to main content
Log in

Genetic transformation of flax (Linum usaitatissimum L.) with the chimeric GFP-TUA6 gene for the visualization of microtubules

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The data of Agrobacterium-mediated transformations of some Linum usitatissimum cultivars located in the territories of Belarus and Ukraine with the plasmid carrying of the chimeric GFP-TUA6 gene and the nptII gene as selectable markers conferring resistance to kanamycin are presented in this study. The transformations were affected by a number of factors, including optical density (OD600), inoculation time of explants with Agrobacterium, and coculture conditions. The transgenic nature of the obtained lines was confirmed by PCR analysis. Expression of the GFP-TUA6 gene was detected by confocal laser scanning microscopy. The obtained transgenic lines can be used for further functional studies into the role of microtubules in the processes of building flax fibers and resistance to wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kvavadze, E., Bar-Yosef, O., Belfer-Cohen, A., Boaretto, E., Jakeli, N., Matskevich, Z., and Meshveliani, T., 30.000-Year-Old Wild Flax Fibers, Science, 2009, vol. 325, no. 5946, p. 1359.

    Article  PubMed  CAS  Google Scholar 

  2. Dissanayake, N.P.J., Summerscales, J., Grove, S.M., and Singh, M.M., Life Cycle Assessment of Flax Fiber for the Reinforcement of Composites, J. Bio-Based Materials BioEnergy, 2009, vol. 3, no. 3, pp. 245–248.

    Article  CAS  Google Scholar 

  3. Bringmann, M., Landrein, B., Schudoma, C., Hamant, O., Hauser, M.-T., and Persson, S., Cracking the Elusive Alignment Hypothesis: The Microtubule-Cellulose Synthase Nexus Unraveled, Trends Plant Sci., 2012, vol. 17, no. 11, pp. 666–674.

    Article  PubMed  CAS  Google Scholar 

  4. Grushetskaya, Z.E., Lemesh, V.A., and Khotyleva, L.V., Development of Specific and Degenerated Primers to CesA Genes Encoding Flax (Linum usitatissimum L.) Cellulose Synthase, Cytol. Genet., 2010, vol. 44, no. 4, pp. 3–8.

    Article  CAS  Google Scholar 

  5. Baskin, T.I., On the Alignement of Cellulose Micro-Fibrils by Cortical Microtubules: A Review and a Model, Protoplasma, 2001, vol. 215, pp. 150–171.

    Article  PubMed  CAS  Google Scholar 

  6. Baskin, T.I., Anisotropic Expansion of the Plant Cell Wall, Annu. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 203–222.

    Article  PubMed  CAS  Google Scholar 

  7. Baskin, T.I., Beemster, G.T., Judy-March, J.E., and Marda, F., Disorganization of Cortical Microtubules Stimulates Tagential Expansion and Reduces the Uniformity of Cellulose Microfibril Alignment Among Cells in the Root of Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 2279–2290.

    Article  PubMed  CAS  Google Scholar 

  8. Hotte, N.S.C. and Deyholos, M.K., A Flax Fibre Proteome: Identification of Proteins Enriched in Bast Fibres, BMC Plant Biol., 2008, vol. 8, p. 52.

    Article  PubMed  Google Scholar 

  9. Boutte, Y., Vernhettes, S., and Satiat-Jeunemaitre, B., Involvement of the Cytoskeleton in the Secretory Pathway and Plasma Membrane Organization, Cell Biol. Int., 2007, vol. 31, pp. 649–654.

    Article  PubMed  CAS  Google Scholar 

  10. Shysha, E.N., Yemets, A.I., Guzenko, E.V., Lemesh, V.A., Kartel’, N.A., and Blume, Ya.B., The Study of the Regenerative Capacity and Root Formation in Fiber Flax Varieties of Ukrainian and Belarusian Selection, Fiziol. Biokhim. Kul’t. Rast., 2011, vol. 43, no. 1, pp. 57–64.

    Google Scholar 

  11. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., Primary Structure of the Aequorea Victoria Green-Fluorescent Protein, Gene, 1992, vol. 111, pp. 229–233.

    Article  PubMed  CAS  Google Scholar 

  12. Ueda, K., Matsuyama T., and Hashimoto, T., Visualisation of Microtubules in Living Cells of Transgenic Arabidopsis thaliana, Protoplasma, 1999, vol. 206, pp. 201–206.

    Article  Google Scholar 

  13. Kumagai, F., Yoneda, A., Tomida, T., Sano, T., Nagata, T., and Hasezawa, S., Fate of Nascent Microtubules Organized at the M/G1 Interface, as Visualized by Synchronized Tobacco BY-2 Cells Stably Expressing GFP-Tubulin: Time-Sequence Observations of the Reorganization of Cortical Microtubules in Living Plant Cells, Plant Cell Physiol., 2001, vol. 42, no. 7 P, pp. 723–732.

    Article  PubMed  CAS  Google Scholar 

  14. Krasylenko, Yu., Yemets, A., Sheremet, Ya., and Blume, Ya.B., Nitric Oxide as a Critical Factor for Perception of UV-B Irradiation by Microtubules in Arabidopsis, Physiol. Plant., 2012, vol. 145, no. 4, pp. 501–515.

    Article  Google Scholar 

  15. Bleho, J. and Samaj, J., Green Fluorescent Protein as a Vital Marker for Non-Destructive Detection of Transient Transformation Events in Flax Explants, Agriculture (Po’nohospodarstvo), 2010, vol. 56, no. 4, pp. 99–105.

    CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning, Book 1, New York: Cold Spring Harbor Laboratory Press, 1989, pp. 630–631.

    Google Scholar 

  17. Dong, J.Z. and McHugen, A., An Improved Procedure for Production of Transgenic Flax Plants using Agrobacterium tumefaciens, Plant Sci., 1993, vol. 88, pp. 61–71.

    Article  CAS  Google Scholar 

  18. Dong, J.Z. and McHughen, A., Transgenic Flax Plants from Agrobacterium tumefaciens Transformation-Incidence of Chimeric Regenerants and Inheritance of Transgenic Plants, Plant. Sci., 1993, vol. 91, pp. 139–138.

    Article  CAS  Google Scholar 

  19. Polyakova, A.V., Chirkizova, O.F., Kalyaeva, M.A., et al., The Transformation of Fiber Flax Plants, Russ. J. Plant Physiol., 1998, vol. 45, no. 6, pp. 764–769.

    Google Scholar 

  20. Yemets, A., Radchuk, V., Bayer, O., Bayer, G., Baird, V., and Blume, Ya., The Development of Transformation Vectors Based upon Modified Plant A-Tubulin Gene as a Selectable Marker, Cell. Biol. Int., 2008, vol. 32, no. 5, pp. 566–570.

    Article  PubMed  CAS  Google Scholar 

  21. Ling, H.Q. and Binding, H., Plant Regeneration from Protoplasts in Linum, Plant Breed., 1987, vol. 98, pp. 312–317.

    Article  Google Scholar 

  22. Ling, H.Q. and Binding, H., Improvement of Plant Regeneration from Protoplasts by the Induction of Somatic Embryogenesis, J. Plant. Physiol., 1992, vol. 139, pp. 422–426.

    Article  CAS  Google Scholar 

  23. Belonogova, M.A. and Raldugina, G.N., Shoot Regeneration from Cotyledon Explants of Fibre Flax (Linum usitatissimum) and Their Subsequent Rooting, Russ. J. Plant Physiol., 2006, vol. 53, no. 4, pp. 142–148.

    Article  Google Scholar 

  24. Bretange, B., Chupeau, M.-C., Chupeau, Y., and Fouilloux, G., Improved Flax Regeneration from Hypocotyls using Thidiazuron as a Cytokinin Source, Plant Cell Rep., 1994, vol. 14, pp. 120–124.

    Google Scholar 

  25. Dedicova, B., Hricova, A., Samaj, J., Obert, B., Bobak, A., and Pretova, A., Shoots and Embryo-Like Structures Regenerated from Cultured Flax (Linum usitatissimum L.) Hypocotyl Segments, J. Plant. Physiol., 2000, vol. 157, pp. 327–334.

    Article  CAS  Google Scholar 

  26. Bayer, O.A., Bayer, G.Ya., Yemets, A.I., and Blume, Ya.B., The Introduction to in vitro Culture and the Regenerative Capacity of Fiber Flax Varieties with Different Resistance to Lodging, Fiziol. Biokhim. Kul’t. Rast., 2004, vol. 36, no. 1, pp. 48–54.

    Google Scholar 

  27. Nichterlein, K., Umbach, H., and Friedt, W., Genotypic and Exogenous Factors Affecting Shoot Regeneration from Anther Callus of Linseed (Linum usitatissimum L.), Euphytica, 1991, vol. 58, pp. 157–164.

    Article  Google Scholar 

  28. Chen, Y., Kenaschuk, E.O., and Dribnenki, P., Response of Flax Genotypes to Doubled Haploid Production, Plant Cell Tissue Org. Cult., 1999, vol. 57, pp. 195–198.

    Article  Google Scholar 

  29. Chen, Y. and Dribnenki, P., Effect of Genotype and Medium Composition on Flax (Linum usitatissimum L.) Anther Culture, Plant Cell Tissue Org. Cult., 1999, vol. 57, pp. 204–207.

    Google Scholar 

  30. Yemets, A.I., Bayer, O.A., Radchuk, V.V., and Blume, Ya.B., Agrobacterium-Mediated Transformation of Flax with a Mutant Tubulin Gene Responsible for Resistance to Dinitroaniline Herbicides, Russ. J. Genet., 2009, vol. 45, vol. 8, pp. 1–9.

    Article  Google Scholar 

  31. Jordan, M. and McHughen, A., Transformed Callus Does Not Necessarily Regenerate Transformed Shoots, Plant Cell Rep., 1988, vol. 7, pp. 285–287.

    Article  CAS  Google Scholar 

  32. Misra, S. and Gedamu, L., Heavy Metal Tolerant Transgenic Brassica napus L. and Nicotiana tabacum L. Plants, Theor. Appl. Genet., 1989, vol. 78, pp. 161–168.

    Article  CAS  Google Scholar 

  33. Denis, M., Delourme, R., Gourret, J.P., Mariani, C., and Renard, M., Expression of Engineered Nuclear Male Sterility in Brassica napus, Plant Physiol., 1993, pp. 1295–1304.

    Google Scholar 

  34. Budar, F., Thia-Thoong, L., Van Montagu, M., and Hernalsteens, J.P., Agrobacterium-Mediated Gene Transfer Results Mainly in Transgenic Plants Transmitting T-DNA as a Single Mendelian Factor, Genetics, 1986, vol. 114, pp. 303–313.

    PubMed  CAS  Google Scholar 

  35. Bleho, J., Obert, B., Takac, T., Petrovska, B., Heym, C., Menzel, D., and Samaj, J., ER Disruption and GFP Degradation during Non-Regenerable Transformation of Flax with Agrobacterium tumefaciens, Protoplasma, 2012, vol. 249, pp. 53–63.

    Article  PubMed  CAS  Google Scholar 

  36. Snegireva, A.V., Ageeva, M.V., Amenitskii, S.I., Chernova, T.E., Ebscamp, M., and Gorshkova, T.A., Intrusive Growth of Sclerenchyma Fibers, Russ. J. Plant Physiol., 2010, vol. 57, no. 3, pp. 361–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Shysha.

Additional information

Original Russian Text © E.N. Shysha, V.I. Korhovyu, G.Ya. Bayer, E.V. Guzenko, V.A. Lemesh, N.A. Kartel’, A.I. Yemets, Ya.B. Blume, 2013, published in Tsitologiya i Genetika, 2013, Vol. 47, No. 2, pp. 3–11.

About this article

Cite this article

Shysha, E.N., Korhovyu, V.I., Bayer, G.Y. et al. Genetic transformation of flax (Linum usaitatissimum L.) with the chimeric GFP-TUA6 gene for the visualization of microtubules. Cytol. Genet. 47, 63–69 (2013). https://doi.org/10.3103/S0095452713020096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452713020096

Keywords

Navigation