Skip to main content

Corn plant DNA methylation pattern changes at UV- C irradiation fractionating

Abstract

The relationship between changes in the methylation pattern of functionally different parts of DNA and the chromosomal aberration’s yield was studied under the conditions of UV-C irradiation fractionating. A combination of restriction analysis (HpaII, MspI, and MboI enzymes) with subsequent PCR (internal transcribed spacer ITS1 and ITS4 and inter simple sequence repeat ISSR(14b) primers) was used. The obtained results showed changes in the methylation pattern of the satellite and transcribed DNA part of DNA at irradiation in the fractionating mode, depending on the fraction range. The role of a DNA methylation pattern changes in the development of radiation damage and induction of the organism’ protective reactions was discussed.

This is a preview of subscription content, access via your institution.

References

  1. Vanyushin, V.F., DNA Methylation in Eukaryotes: A New Mechanism of Regulation of Gene Expression and Cell Differentiation, Usp. Biol. Khim., 1983, vol. 24, pp. 170–193.

    Google Scholar 

  2. Adams, R.L.P., DNA Methylation, Principles Med. Biol., Bittar, E.E., Ed., New York, 1996, vol. 5, pp. 33–66.

  3. Tishchenko, E.N. and Dubrovnaya, O.V., Epigeneticheskaya regulyatsiya. Metilirovanie DNK genov i transgenov rastenii (Epigenetic Regulation: Methylation of DNA of Genes and Transgenes of Plants), Kyiv: Logos, 2004.

    Google Scholar 

  4. Hauser, M.-T., Aufsatz, W., Jonak, C., and Lusching, C., Transgenerational Epigenetic Inheritance in Plants, Biochim. Biophys. Acta, 1809, vol. 1809, no. 8, pp. 459–468.

    Google Scholar 

  5. Agorio, A. and Vera, P., ARGONAUTE4 Is Required for Resistance to Pseudomonas syringae in Arabidopsis, Plant Cell, 2007, vol. 19, no. 11, pp. 3778–3790.

    PubMed  Article  CAS  Google Scholar 

  6. Bilichak, A., Ilnystkyy, Y., Hollunder, Y., and Kovalchuk, I., The Progeny of Arabidopsis thaliana Plants Exposed to Salt Exhibit Changes in DNA Methylation, Histone Modifications and Gene Expression, PLoS One, 2012, vol. 7, no. 1, p. e3051522291972.

    Article  Google Scholar 

  7. Lan, Zhong., Yan-hao, Xu., and Jian-bo, Wang., DNA-Methylation Changes Induced by Salt Stress in Wheat Triticum aestivum, African J. Biotechnol., 2009, vol. 8, no. 22, pp. 6201–6207.

    Google Scholar 

  8. Kovalchuk, I., Abramov, V., Pogribny, I., and Kovalchuk, O., Molecular Aspects of Plant Adaptation To Life in the Chernobyl Zone, Plant Physiol., 2004, vol. 135, no. 1, pp. 357–363.

    PubMed  Article  CAS  Google Scholar 

  9. Kovalchuk, O., Burke, P., Arkhipov, A., Kuchma, N., James, S.J., Kovalchuk, I., and Pogribny, I., Genome Hypermethylation in Pinus sylvestris of Chernobyl-A Mechanism for Radiation Adaptation?, Mutat. Res., 2003, vol. 529, nos. 1/2, pp. 13–20.

    PubMed  CAS  Google Scholar 

  10. Pogribny, I., Koturbash, I., Tryndyak, V., Hudson, D., Stevenson, S.M.L., Sedelnikova, O., Bonner, W., and Kovalchuk, O., Fractionated Low-Dose Radiation Exposure Leads to Accumulation of DNA Damage and Profound Alterations in DNA and Histone Methylation in the Murine Thymus, Mol. Cancer Res., 2005, vol. 3, no. 10, pp. 553–561.

    PubMed  Article  CAS  Google Scholar 

  11. Bernal, A., Dolinoy, D.C., Huang, D., and Jirtle, R.L., Low Dose Radiation Alters the Fetal Epigenome. http://www.orau.gov/lowdose2009/abstracts/Jirtle-Randy.pdf

  12. Kim, S.Y., Yun, H.J., Kwon, Y.Y., Kim, E.J., and Kang, C.M., Possible Biomarkers for Low Dose Radiation Exposure and/or for Old Exposure. http://www.dartmouth.edu/~eprctr/biodose2008/pdf/B10.pdf

  13. Kravets, A.P., Mousseau, T.A., Litvinchuk, A.V., Ostermiller, Sh., Vengzhen, G.S., and Grodzinskiy, D.M., Wheat Plant DNA Methylation Pattern Changes at Chronic Seed γ-Irradiation, Cytol. Genet., 2010, vol. 44, no. 5, pp. 276–279.

    Article  Google Scholar 

  14. Draper, J., Genetic Engineering of Plants: A Laboratory Manual, Moscow: Nauka, 1991.

    Google Scholar 

  15. Rakhmanova, T.I., Matasova, L.V., Semenikhina, A.V., Safonova, O.A., Makeeva, A.V., and Popova, T.N., Metody otsenki oksidativnogo stressa (Methods for Oxidative Stress Assessment), Voronezh, 2009.

  16. Ausubel, F.M., et al., Current Protocols in Molecular Biology. 2004. A.3D.1-A.3D.12 Biophotometer Operating Manual. http://www.eppendorf.com

  17. PCR Protocols, Bartlett, J.M.S. and Stirling, D., Eds., Totowa, New York: Humana Press, 2003.

    Google Scholar 

  18. Tikunov, Yu.M. and Khrystaleva, L.I., Application of ISSR Markers in the Genus Lycopersicon, Euphytica, 2003, vol. 131, pp. 71–80.

    Article  CAS  Google Scholar 

  19. Ivanov, V.B., Kletochnye osnovy rosta rastenii (Cellular Bases of Plant Growth), Moscow: Nauka, 1974.

    Google Scholar 

  20. Lobov, V.P., Daskalyuk, A.P., Skripka, L.V., and Tishchenko, E.N., Organizatsiya nukleotidnykh posledovatel’nostei DNK rastenii (Organization of Nucleotide Sequences of Plant DNA), Kyiv: Naukova Dumka, 1986.

    Google Scholar 

  21. Hemleben, V., Beridze, T.G., Bakhman, L., Kovarik, Ya., and Torres, R., Satellite DNA, Usp. Biol. Khim., 2003, vol. 43, pp. 267–306.

    CAS  Google Scholar 

  22. Lekyavichus, E., Elementy obshchei teorii adaptatsii (Elements of the General Adaptation Theory), Vilnius: Mokslas, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kravets.

Additional information

Original Russian Text © A.P. Kravets, D.A. Sokolova, G.S. Vengzhen, D.M. Grodzinsky, 2013, published in Tsitologiya i Genetika, 2013, Vol. 47, No. 1, pp. 37–43.

About this article

Cite this article

Kravets, A.P., Sokolova, D.A., Vengzhen, G.S. et al. Corn plant DNA methylation pattern changes at UV- C irradiation fractionating. Cytol. Genet. 47, 29–33 (2013). https://doi.org/10.3103/S0095452713010052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452713010052

Keywords

  • Methylation Pattern
  • Chromosome Aberration
  • ISSR Primer
  • Fraction Range
  • Full Dose Irradiation