Skip to main content
Log in

Mutagenic and antimutagenic properties of some lichen species grown in the Eastern Anatolia Region of Turkey

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

All the methanol extracts did not show mutagenic activity in Ames/Salmonella and Z. mays MI test systems. Furthermore, some extracts showed significant antimutagenic activity against 9-AA in Ames test system. Inhibition rates for 9-AA mutagenicity ranged from 25.51% (P. furfuracea—0.05 μg/plate) to 66.14% (C. islandica—0.05 μg/plate). In addition, all of the extracts showed significant antimutagenic activity against sodium azide (NaN3) mutagenicity on MI values of Z. mays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shinohara, K., Biophylactic and Anticarcinogenic Functions of Vegetables and Fruits, Nippon Mogeikagaku Kaishi, J. The Japan. Soc. Biosci. Biotech. and Agrochem, 1993, vol. 67, pp. 42–45.

    Google Scholar 

  2. Nakasugi, T., et al., Antimutagens in Gaiyou (Artemisia argyi Levl. et Vant.), J. Agricul. Food. Chem., 2000, vol. 48, pp. 3256–3266.

    Article  CAS  Google Scholar 

  3. Ozbek, T., et al., Investigation of the Antimatagenic Effects of Methanol Extract of Astragalus L. Species Growing in Eastern Anatolia Region of Turkey, Fresen. Environ. Bull., 2008, vol. 17, pp. 2052–2058.

    CAS  Google Scholar 

  4. Ozbek, T., et al., Antimutagenic Activities of Methanol Extracts of Some Endemic Astragalus Species Evaluated by Ames Salmonella/Microsomal Test, Asian J. Chem., 2009, vol. 21, pp. 451–458.

    CAS  Google Scholar 

  5. Zeytinoglu, H., et al., Determination of Genotoxic, Antigenotoxic and Cytotoxic Potential of the Extract from Lichen Cetraria aculeate (Schreb.) Fr. in vitro, Phytother. Res., 2008, vol. 22, pp. 118–123.

    Article  PubMed  CAS  Google Scholar 

  6. Kundu, J.K., et al., Breaking the Relya in Deregulated Cellular Signal Transduction as a Rationale for Chemoprevention with Anti-Inflammatory Phytochemicals, Mutat. Res., 2005, vol. 591, pp. 123–146.

    Article  PubMed  CAS  Google Scholar 

  7. Tsukagoshi, S., et al., Protein-Bound Polysaccharide Preparation, PSK, Effective against Mouse Sarcoma 180 and Rat Ascites Hepatoma AH-13 by Oral Use, Japan J. Cancer Res. (Gann.), 1974, vol. 65, pp. 557–558.

    CAS  Google Scholar 

  8. Agar, G., et al., Mutation Preventive and Antigenotoxic Potential of Methanol Extracts of Two Lichen, J. Med. Plants. Res., 2010, vol. 4, pp. 2132–2137.

    Google Scholar 

  9. Cansaran, D., et al., Determination of Usnic Acid in Some Rhizoplaca Species from the Middle Anatolia and Their Antimicrobial Activities, Zeitschrift fur Naturforschung, 2006, vol. 61, pp. 47–51.

    PubMed  CAS  Google Scholar 

  10. Odabasoglu, F., et al., Comparison of Antioxidant Activity and Phenolic Contents of Three Lichen Species, Phytother. Res., 2004, vol. 18, pp. 938–941.

    Article  PubMed  Google Scholar 

  11. Ozurk, S., Yuzyillarin Cevrecisi Likenler (Published in Turkish), Bilim ve Teknik, 1995, vol. 328, pp. 74–79.

    Google Scholar 

  12. Aslan, A., et al., Antioxidant and Antimicrobial Properties of the Lichens Cladonia foliacea, Dermatocarpon miniatum, Everinia divaricata, Evernia prunastri, and Neofuscella pulla, Pharm. Biol., 2006, vol. 44, pp. 247–252.

    Article  Google Scholar 

  13. Gulluce, M., et al., Screening the Antioxidant and Antimicrobial Properties of the Lichens Parmelia saxatilis, Platismatia glauca, Ramalina pollinaria, Ramalina polymorpha, and Umbilicaria nylanderiana, Phytomedicine, 2006, vol. 13, pp. 515–521.

    Article  PubMed  CAS  Google Scholar 

  14. Dobson, F.S., Lichens, an Illustrated Guide to the British and Irish Species, Slough, United Kingdom: Richmond Publ., 2000.

    Google Scholar 

  15. Poet, J., et al., Bestimmungsschussel Europaisher Flechten, Erganzungsheft II, Bibliotheca Lichenologica, 1981, vol. 16, pp. 1–390.

    Google Scholar 

  16. Purwis, O.W., et al., The Lichen Flora of Great Britain and Ireland, London, England: Natural History Museum Publications in association with The British Lichen Society, 1992.

    Google Scholar 

  17. Lin, J., et al., Preliminary Screening of Some Traditional Zulu Medicinal Plants for Anti-Inflammatory and Anti-Microbial Activities, J. Ethnopharmacol., 1999, vol. 68, pp. 267–274.

    Article  PubMed  CAS  Google Scholar 

  18. Oh, H.T., et al., Antioxidative and Antimutagenic Activities of 70% Ethanol Extract from Masou Salmon (Oncorhynchus masou), Toxicol. in Vitro, 2008, vol. 22, pp. 1484–1488.

    Article  PubMed  CAS  Google Scholar 

  19. Santana-Rios, G., et al., Potent Antimutagenic Activity of White Tea in the Salmonella Assay, Mutat. Res., 2001, vol. 495, pp. 61–74.

    Article  PubMed  CAS  Google Scholar 

  20. Yu, Z., et al., A Comparison of Whole Wheat, Refined Wheat and Wheat Bran as Inhibitors of Heterocyclic Amines in the Salmonella Mutagenicity Assay and in the Rat Coonic Aberrant Crypt Focus Assay, Food Chem. Toxicol., 2001, vol. 39, pp. 655–665.

    Article  PubMed  CAS  Google Scholar 

  21. Konuk, M., et al., Determination of Genotoxic Effect of Boron on Allium cepa Root Meristematic Cells, Pak. J. Bot., 2007, vol. 39, pp. 73–79.

    Google Scholar 

  22. Yuzbasioglu, D., et al., Cytological Effects of Herbicide Racer Flurochloridone on Allium cepa, Caryologia, 2003, vol. 56, pp. 97–105.

    Google Scholar 

  23. Mortelmans, K., et al., The Ames Salmonella/Microsome Mutagenicity Assay, Mutat. Res., 2000, vol. 455, pp. 29–60.

    Article  PubMed  CAS  Google Scholar 

  24. Maron, D.M., et al., Revised Methods for the Salmonella Mutagenicity Test, Mutat. Res., 1983, vol. 113, pp. 173–215.

    Article  PubMed  CAS  Google Scholar 

  25. Evandri, M.G., The Antimutagenic Activity of Lavandula angustifolia (Lavender) Essential Oil in the Bacterial Reverse Mutation Assay, Food. Chem. Toxicol., 2005, vol. 43, pp. 1381–1387.

    Article  PubMed  CAS  Google Scholar 

  26. Santos, F.V., et al., Mutagenicity of Mouriri pusa Gardner and Mouriri elliptica Martius, Food. Chem. Toxicol., 2008, vol. 46, pp. 2721–2727.

    Article  PubMed  CAS  Google Scholar 

  27. Varella, S.D., et al., Mutagenic Activity in Waste from an Aluminum Products Factory in Salmonella/Microsome Assay, Toxicol. in Vitro, 2004, vol. 18, pp. 895–900.

    Article  PubMed  CAS  Google Scholar 

  28. Vargas, V.M.F., et al., Mutagenic Activity Detected by the Ames Test in River Water the Influence of Petrochemical Industries, Mutat. Res., 1993, vol. 319, pp. 31–45.

    Article  PubMed  CAS  Google Scholar 

  29. Ikken, Y., et al., Antimutagenic Effect of Fruit and Vegetable Ethanolic Extracts against N-Nitrosamines Evaluated by the Ames Test, J. Agric. Food Chem., 1999, vol. 47, pp. 3257–3264.

    Article  PubMed  CAS  Google Scholar 

  30. Negi, P.S., et al., Antioxidant and Antimutagenic Activities of Pomegranate Peel Extracts, Food. Chem., 2003, vol. 80, pp. 393–397.

    Article  CAS  Google Scholar 

  31. Jiang, W., et al., Effects of Pb2+ on Root Growth, Cell Division, and Nucleolus of Zea mays (L.), B. Environ. Contam. Tox., 2000, vol. 65, pp. 786–793.

    Article  CAS  Google Scholar 

  32. Sharma, A.K., et al., Chromosome Techniques-Theory and Practice, 2d ed., Baltimore, MD: University Park Press, 1982.

    Google Scholar 

  33. Agar, G., et al., The Protective Role of Selenium against the Genotoxicity Induced by Aflatoxin B1 in Root Cells of Crop Plants, Fresen. Environ. Bull., 2005, vol. 14, pp. 849–853.

    CAS  Google Scholar 

  34. Kiran, Y., et al., The Effects of the Lead on the Seed Germination, Root Growth, and Root Tip Cell Mitotic Divisions of Lens culinaris (Medik.), GUJ Sci., 2005, vol. 18, pp. 17–25.

    Google Scholar 

  35. Vallance, H., et al., Carrier Testing for Autosomal-Recessive Disorders, Crit. Rev. Cl. Lab. Sci., 2003, vol. 40, pp. 473–497.

    Article  CAS  Google Scholar 

  36. Abonyi, D.O., et al., Plants as Sources of Antiviral Agents, Afr. J. Biotechnol., 2009, vol. 8, pp. 3989–3997.

    CAS  Google Scholar 

  37. Cansaran, D., et al., HPLC Analysis of the Usnic Acid in Some Ramelina Species from Anatolia and Investigation of Their Antimicrobial Activities, Pharm. Biol., 2007, vol. 45, pp. 77–81.

    Article  CAS  Google Scholar 

  38. Fazio, A.T., et al., Lichen Secondary Metabolites from the Cultured Lichen Mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and Their Antiviral Activities, Z. Naturforsch. C, 2007, vol. 62, pp. 543–549.

    PubMed  CAS  Google Scholar 

  39. Grant, W.F., et al., Comparative Mutagenicity of Chemicals Selected for Test in the International Program on Chemical Sagety’s Collaborative Study on Plant Systems for the Detection of Environmental Mutagens, Mutat. Res., 1994, vol. 310, pp. 187–209.

    Article  PubMed  CAS  Google Scholar 

  40. Gulluce, M., et al., Mutagenic and Antimutagenic Effects of Some Astragaus Species Grown in the Eastern Anatolia Region of Turkey, Phytother. Res., 2010, vol. 24, pp. 1014–1018.

    PubMed  Google Scholar 

  41. Sadiq, M.F., et al., Mutagenicity of Sodium Azide and Its Metabolite Azidoalanine in Drosophila melanogaster, Mutat. Res., 2000, vol. 469, pp. 253–257.

    Article  PubMed  CAS  Google Scholar 

  42. Owais, W.M., et al., Metabolic Activation of the Mutagen Azide in Biological Systems, Mutat. Res., 1988, vol. 197, pp. 313–323.

    Article  PubMed  CAS  Google Scholar 

  43. Arikan, E., et al., Sequences of the E. coli UvrB Gene and Protein, Nucleic Acids Res., 1986, vol. 14, pp. 2637–2650.

    Article  PubMed  CAS  Google Scholar 

  44. Ferguson, L.R., et al., The Genetic Toxicology of Acridines, Mutat. Res., 1991, vol. 258, pp. 123–160.

    Article  PubMed  CAS  Google Scholar 

  45. Lerman, L.S., Structural Considerations in the Intercalations of DNA and Acridines, J. Mol. Biol., 1961, vol. 3, pp. 18–30.

    Article  PubMed  CAS  Google Scholar 

  46. Neidle, S., et al., Structural and Sequence-Dependent Aspects of Drug Intercalation into Nucleic Acids, Crit. Rev. Biochem., 1984, vol. 17, pp. 73–121.

    Article  CAS  Google Scholar 

  47. Ferguson, L.R., et al., Frameshift Mutagenesis by Acridines and Other Reversibly-Binding DNA Ligands, Mutagenesis, 1990, vol. 5, pp. 529–540.

    Article  PubMed  CAS  Google Scholar 

  48. Hoffmann, G.R., et al., Frameshift Mutations Induced by Three Classes of Acridines LacZ Reversion Assay in Escherichia coli: Potency of Responses and Relationship to Slipped Mispairing Models, Environ. Mol. Mutagen., 2003, vol. 42, pp. 111–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to M. Karadayi.

Additional information

The article is published in the original.

About this article

Cite this article

Aslan, A., Gulluce, M., Agar, G. et al. Mutagenic and antimutagenic properties of some lichen species grown in the Eastern Anatolia Region of Turkey. Cytol. Genet. 46, 291–296 (2012). https://doi.org/10.3103/S0095452712050039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452712050039

Keywords