Skip to main content
Log in

Obtaining of hairy-root, callus and suspenison cell cultures of carrot (Daucus carota L.) able to accumulate human interferon alpha-2b

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Here we report the obtaining of suspension, callus and hairy root culture initiated from carrot plants of Nantskaya and Perfektzya variety with the highest level of recombinant human interferon-2b accumulation exhibiting the highest level of plant protein extract antiviral activity (up to 12.8 × 103 IU/mg TSP). The antiviral activity of callus extracts was significantly lower comparing to the activity of plant extracts from the parent organisms. However, the antiviral activity level of suspension culture extracts (up to 4.42 × 103 IU/mg TSP) and Ri-root ones (up to 4.42 × 103 IU/mg TSP) appeared to be comparable to analogical data of antiviral activity of transgenic carrot leaf extracts, this way the described cultures could be possibly used for comparatively speedy obtaining of recombinant therapeutic protein for curing and preventing of virus diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Streatfield, S.J. and Howard, J.A., Plant-Based Vaccines, Int. J. Parasitol., 2003, vol. 33, pp. 479–493.

    Article  PubMed  CAS  Google Scholar 

  2. Su, W.W. and Lee, K.T., Plant Cell and Hairy-Root Cultures Process Characteristics, Products, and Applications, in Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications, Yang, S.T. and Ed., New York: Elsevier, 2006, pp. 263–292.

    Google Scholar 

  3. Fischer, R., Emans, N., Schuster, F., et al., Towards Molecular Farming in the Future: Using Plant-Cell-Suspension Cultures as Bioreactors, Biotechnol. Appl. Biochem., 2003, vol. 30, no. 2, pp. 109–112.

    Google Scholar 

  4. Kim, T.-G., Kim, H.-M., Lee, H.-J., et al., Reduced Protease Activity in Transformed Rice Cell Suspension Cultures Expressing a Proteinase Inhibitor, Prot. Exp. Purif., 2007, vol. 53, no. 2, pp. 270–277.

    Article  CAS  Google Scholar 

  5. Shiha, Sh.M., H., Doran P.M. Foreign Protein Production Using Plant Cell and Organ Cultures: Advantages and Limitations, Biotechnol. Adv., 2009, vol. 27, no. 6, pp. 1036–1042.

    Article  Google Scholar 

  6. Francisco, J.A., Gawlak, S.L., Miller, M., et al., Expression and Characterization of Bryodin 1 and a Bryodin 1-Based Single-Chain Immunotoxin from Tobacco Cell Culture, Bioconjug. Chem., 1997, vol. 8, no. 5, pp. 708–713.

    Article  PubMed  CAS  Google Scholar 

  7. Terashima, M., Murai, Y., Kawamura, M., et al., Production of Functional Human Alpha 1-Anti-Trypsin by Plant Cell Culture, Appl. Microbiol. Biotechnol., 1999, no. 4, pp. 516–523.

  8. Huang, L.-F., Liu, Y.-K., Lu, C.-A., et al., Production of Human Serum Albumin by Sugar Starvation Induced Promoter and Rice Cell Culture, Transgenic. Res., 2000, vol. 14, no. 5, pp. 569–581.

    Article  Google Scholar 

  9. Torres, E., Vaquero, C., Nicholson, L., et al., Rice Cell Culture as an Alternative Production System for Functional Diagnostic and Therapeutic Antibodies, Transgenic Res., 1999, vol. 8, no. 6, pp. 441–449.

    Article  PubMed  CAS  Google Scholar 

  10. Miao, Y., Ding, Y., Sun, Q.Y., et al., Plant Bioreactors for Pharmaceuticals Biotechnology and Genetic Engineering, Reviews, 2008, vol. 25, pp. 363–380.

    CAS  Google Scholar 

  11. Carpita, N., Sabularse, D., Monterzinos, D., et al., Determination of the Pore Size of Cell Walls of Living Plant Cells, Science, 1979, vol. 205, no. 4411, pp. 1144–1147.

    Article  PubMed  CAS  Google Scholar 

  12. Su, W.W., Bioreactor Engineering for Recombinant Protein Production Using Plant Cell Suspension Culture, Plant Tissue Culture Engineering, 2006, vol. 6, pp. 135–159.

    Article  Google Scholar 

  13. Doran, P.M., Foreign Protein Degradation and Instability in Plants and Plant Tissue Cultures, Trends Biotechnol., 2006, vol. 24, pp. 426–432.

    Article  PubMed  CAS  Google Scholar 

  14. Sivakumar, G., Bioreactor Technology: A Novel Industrial Tool for High-Tech Production of Bioactive Molecules and Biopharmaceutical from Plant Roots, J. Biotechnol., 2006, vol. 1, pp. 1419–1427.

    Article  CAS  Google Scholar 

  15. Choi, Y.E., Kim, Y.S., and Paek, K.Y., Types and Designs of Bioreactors for Hairy Root Culture, Plant Tissue Culture Engineering, 2006, vol. 6, pp. 161–172.

    Article  Google Scholar 

  16. Guillon, S., Tremouillaux-Guiller, J., Pati, P.K., et al., Hairy Root Research: Recent Scenario and Exciting Prospects, Curr. Opin. Plant. Biol., 2006, vol. 9, pp. 341–346.

    Article  PubMed  CAS  Google Scholar 

  17. Drake, P.M.W., Chargelegue, D.M., Vine, N.D., et al., Rhizosecretion of a Monoclonal Antibody Protein Complex from Transgenic Tobacco Roots, Plant. Mol. Biol., 2005, vol. 52, no. 1, pp. 233–241.

    Article  Google Scholar 

  18. Wongsamuth, R. and Doran, P.M., Production of Monoclonal Antibodies by Tobacco Hairy Roots, Biotechnol. Bioeng., 2000, vol. 54, pp. 401–415.

    Article  Google Scholar 

  19. Ma, J.K., Drake, P.M., Chargelegue, D., et al., Antibody Processing and Engineering in Plants, and New Strategies for Vaccine Production, Vaccine, 2005, vol. 23, no. 15, pp. 1814–1818.

    Article  PubMed  CAS  Google Scholar 

  20. Borisjuk, N.V., Borisjuk, L.G., Logendra, S., et al., Production of Recombinant Proteins in Plant Root Exudates, Nat. Biotechnol., 1999, vol. 17, pp. 466–469.

    Article  PubMed  CAS  Google Scholar 

  21. Gaume, A., Komarnytsky, S., Borisjuk, N.V., et al., Rhizosecretion of Recombinant Proteins from Plant Hairy Roots, Plant. Cell. Rep., 2009, vol. 21, no. 12, pp. 1188–1193.

    Article  Google Scholar 

  22. Luchakivskaya, Yu., Kishchenko, O., Gerasimenko, I., et al., High-Level Expression of Human Interferon Alpha-2b in Transgenic Carrot (Daucus carota L.) Plants, Plant Cell Rep., 2011, vol. 30, no. 3, pp. 407–415.

    Article  PubMed  CAS  Google Scholar 

  23. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays Tissue Cultures, Physiol. Pl., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  24. Doyle, J.J. and Doyle, J.L., Isolation of Plant DNA from Fresh Tissue, Focus, 1990, vol. 12, pp. 13–15.

    Google Scholar 

  25. Bradford, M.M., A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  26. Rubinstein, S., Familletti, Ph., and Petska, S., Convenient Assay for Interferons, J. Virol., 1981, no. 5, pp. 755–758.

  27. Medvedev, A.E., Fuchs, B.B., and Rakhmilevich, A.L., A Study of the Action of Immunosuppressive Factors from Tumor Cells on Lymphocytes and Macrophages in Vitro and on the Graft-Versus-Host Reaction in Mice, Biomed. Sci., 1990, vol. 3, no. 1, pp. 261–266.

    Google Scholar 

  28. Preclinical Studies of Drugs, Stefanov, O.V., Ed., Kyiv, 2001.

  29. Dougall, D.K. and Weyrauch, K.W., Abilities of Organic Acids T Support Growth and Anthocyanin Accumulation by Suspension Cultures of Wild Carrot Cells Ammonium as the Sole Nitrogen Source, Cell. Dev. Biol., 1980, vol. 16, no. 11, pp. 969–975.

    CAS  Google Scholar 

  30. Michler, Ch.H. and Lineberger, R.D., Effects of Light on Somatic Embryo Development and Abscisic Levels in Carrot Suspension Cultures, Plant Cell Tissue Organ. Culture, 1987, vol. 11, pp. 189–207.

    Article  Google Scholar 

  31. Jay, V., Genestier, S., and Courduroux, J.-C., Bioreactor Studies on the Effect of Dissolved Oxygen Concentrations on Growth and Differentiation of Carrot (Daucus carota L.) Cell Cultures, Plant Cell Rep., 1992, vol. 11, pp. 605–608.

    Article  CAS  Google Scholar 

  32. Widholm, J.M., Carrot Cell Mutants, Plant Mol. Biol. Report., 1984, vol. 2, no. 3, pp. 45–53.

    Article  Google Scholar 

  33. Osuga, K. and Komamine, A., Synchronization of Somatic Embryogenesis from Carrot Cells at High Frequency as a Basis for the Mass Production of Embryos, Plant Cell Tissue Organ. Culture, 1994, vol. 39, pp. 125–135.

    Article  CAS  Google Scholar 

  34. Komamine, A., Murata, N., and Nomura, K., 2004 SIVB Congress Symposium Proceeding: Mechanisms of Somatic Embryogenesis in Carrot Suspension Cultures Morphology, Physiology, Biochemistry and Molecular Biology, In Vitro Cell. Dev. Biol. (Plant), 2005, vol. 41, pp. 6–10.

    Article  CAS  Google Scholar 

  35. Ronchi, V.N., Giorgetti, L., Tonelli, M., et al., Ploidy Reduction and Genome Segregation in Cultured Carrot Cell Lines. 1. Prophase Chromosome Reduction, Plant Cell Tissue Organ. Culture, 1992, vol. 30, pp. 107–114.

    Article  Google Scholar 

  36. Kikuchi, A., Satoh, Sh., Nakamura, N., et al., Differences in Pectic Polysaccharides between Carrot Embryogenic and Non-Embryogenic Calli, Plant Cell Rep., 1995, vol. 14, pp. 279–284.

    Article  CAS  Google Scholar 

  37. Ducos, J.-P., Bollon, H., and Pettard, V., Production of Carrot Somatic Embryos in a Bioreactor, Appl. Microbiol. Biotechnol., 1993, vol. 39, pp. 465–470.

    Article  CAS  Google Scholar 

  38. Thorpe, T.A., In Vitro Embryogenesis in Plants, Dordrecht: Kluwer, 1995.

    Book  Google Scholar 

  39. Fujumura, T. and Komamine, A., The Serial Observation of Embryogenesis in a Carrot Cell Suspension Culture, New Phytol., 1980, vol. 86, pp. 213–218.

    Article  Google Scholar 

  40. Leelavathi, S. and Reddy, V.S., Chloroplast Expression of His-Tagged GUS-Fusions: A General Strategy to Overproduce and Purify Foreign Proteins Using Transplastomic Plants As Bioreactors, Mol. Breed., 2003, vol. 11, pp. 49–58.

    Article  CAS  Google Scholar 

  41. Gleba, D., Borisyuk, N., Borisyuk, L., et al., Use of Plant Roots for Phytoremediation and Molecular Farming, Proc. Nat. Acad. Sci. U.S.A., 1999, vol. 96, pp. 5973–5977.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Luchakivskaya.

Additional information

Original Russian Text © Yu.S. Luchakivskaya, Z.M. Olevinskaya, E.M. Kishchenko, N.Ya. Spivak, N.V. Kuchuk, 2012, published in Tsitologiya i Genetika, 2012, Vol. 46, No. 1, pp. 18–26.

The article was translated by the authors.

About this article

Cite this article

Luchakivskaya, Y.S., Olevinskaya, Z.M., Kishchenko, E.M. et al. Obtaining of hairy-root, callus and suspenison cell cultures of carrot (Daucus carota L.) able to accumulate human interferon alpha-2b. Cytol. Genet. 46, 15–20 (2012). https://doi.org/10.3103/S0095452712010057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452712010057

Keywords