Skip to main content

Genetic determination of wheat resistance against Puccinia graminis (f. sp. Tritici) derived from Aegilops cylindrica, Triticum erebuni, and amphidiploid 4

Abstract

Lines of winter soft wheat with introgressed new and effective Sr genes were developed as a result of interspecies hybridization at the Plant Breeding and Genetics Institute. The 85/06 line possesses the SrAc1 gene; the 47/06, 54/06, 82/06, 85/06, 87/06, 238/06, and 367/06 lines carry the SrAc1 and SrAc2 genes originated from Aegilops cylindrica; the 352/06 line has the SrTe1 and SrTe2 genes from Triticum erebuni; and the 12/86-04 line contains the SrAd1 and SrAd2 genes from Amphidipoid 4 (Triticum dicoccoides × Triticum tauschii).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Catalogue of Gene Symbols for Wheat [Pathogenic Disease/Pest Reaction], McIntosh, R.A., et al., Eds., in Proc. 11th Int. Wheat Genet. Symp., Australia, 2010, pp. 27–33. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  2. 2.

    McFadden, E.S., A Successful Transfer of Emmer Characteristics to Vulgare Wheat, J. Am. Soc. Agron., 1930, vol. 22, pp. 1020–1034.

    Article  Google Scholar 

  3. 3.

    Babayants, L.T., Babayants, O.V., and Vasidbev, A.A., Race Composition of Puccinia graminis Pers. f. tritici Erikss. et Henn and the Resistance of Wheat with Effective Sr-Genes in the Ukrainian Steppe, Collected Scientific Papers of the Plant Breeding and Genetics Institute, 2004, vol. 6, no. 46, pp. 261–268.

    Google Scholar 

  4. 4.

    Roelfs, A.P. and Martens, J.W., An International System of Nomenclature for Puccinia graminis f. sp. tritici, Phytopathology, 1988, vol. 78, pp. 526–533.

    Article  Google Scholar 

  5. 5.

    FAO. Stem Rust Race Nomenclature. 2010. http://www.fao.org/agriculture/crops/rust/stem/stem-patho-typetracker/stem-racenomenclature/en/

  6. 6.

    Singh, R.P., Hodson, D.P., Huerta-Espino, J., et al., Will Stem Rust Destroy the World’s Wheat Crop?, Adv. Agron., 2008, vol. 98, pp. 271–309.

    Article  CAS  Google Scholar 

  7. 7.

    Singh, R.P., Hodson, D.P., Jin, Y., et al., Current Status, Likely Migration and Strategies to Mitigate the Threat to Wheat Production from Race UG99 (TTKS) of Stem Rust Pathogen, CAB Reviews: Perspective in Agricult., Veter. Sci. and Nat. Res., 2006, vol. 54, pp. 1–13.

    Google Scholar 

  8. 8.

    Jin, Y., Singh, R.P., Ward, R.W., et al., Characterization of Seedling Infection Types and Adult Plant Infection Responses of Monogenic Sr Gene Lines to Race TTKS of Puccinia graminis f. sp. tritici, Plant Dis., 2007, vol. 91, pp. 1096–1099.

    Article  Google Scholar 

  9. 9.

    Jin, Y., Szabo, L.J., and Pretorius, Z.A., Ug99 Surveillance: Current Status, Evolution and Migration of the Ug99 Lineage, in Abstr. 11th Int. Wheat Genet. Symp., Sydney, 2008.

  10. 10.

    Borlaug, N., An Assessment of Race Ug99 in Kenya and Ethiopia and the Potential for Impact in Neighboring Regions and Beyond, in Sounding the Alarm on Global Stem Rust, Australia: CIMMYT, 2005.

    Google Scholar 

  11. 11.

    Shuangye, W.U., Molecular Mapping of Stem Rust Resistance Genes in Wheat, Master of Science Thesis, Kansas, 2008.

    Google Scholar 

  12. 12.

    FAO. Effective/Ineffective Stem Rust Resistance Genes, 2010. http://www.fao.org/agriculture/crops/rust/stem/stem-pathotypetracker/stemeffectivesrgenes/en/

  13. 13.

    Jin, Y., Szabo, L.J., Pretorius, Z.A., et al., Detection of Virulence to Resistance Gene Sr24 within Race TTKS of Puccinia graminis f. sp. tritici, Plant Dis., 2008, vol. 92, pp. 923–926.

    Article  Google Scholar 

  14. 14.

    Babayants, L.T., Genetics of Wheat Resistance to Major Diseases, in Problemy povysheniya ustoichivosti zernovykh kul’tur i podsolnechnika k boleznyam i vreditelyam: Sb. Nauch. Tr. VSGI (Problems of Increasing the Resistance of Grain and Sunflower to Diseases and Pests: Collected Scientific Papers of Plant Breeding and Genetics Institute), Odessa, 1990, pp. 5–15.

  15. 15.

    Yahyaoui, A., Personal Communication. International Winter Wheat Traveling Seminar, in International Winter Wheat Improvement Program (Turkey-CIMMYTI-CARDA, June 8–14, 2009), Kyiv-Odessa, 2009.

  16. 16.

    Dyck, P.L., Transfer of a Gene for Stem Rust Resistance from Triticum araraticum to Hexaploid Wheat, Genome, 1992, vol. 35, pp. 788–792.

    Article  Google Scholar 

  17. 17.

    Babayants, L.T., Ribalka, O.I., and Aksel’rud, D.V., A New Source of Stability to the Main Wheat Diseases, in Realization of Potential Opportunities of Cultivars and Hybrids of Breeding and Genetics Institute in Ukraine: Collected Scientific Papers of the Plant Breeding and Genetics Institute, Odessa, 1996, pp. 111–116.

  18. 18.

    Babayants, L.T., Vasil’ev, A.A., and Novitskaya, N.A., The Genetic Basis of Resistance of Interspecific Wheat Hybrids to Puccinia recondite Rob. ex Desm. f. tritici, Tsitol. Genet., 1998, vol. 32, no. 6, pp. 20–26.

    Google Scholar 

  19. 19.

    Babayants, L.T., The Study of the Genetics of Resistance to Smut in Some Strains of Interspecific Wheat Hybrids, Agrarn. Visn. Prichornomor. Zb. Nauk. Pr., Odessa, 1998, vol. 2, pp. 86–92.

    Google Scholar 

  20. 20.

    Babayants, L.T., Dubinina, L.A., and Yushchenko, G.M., Genetic Basis of Resistance to Smut Pathogen (T. caries (Dc) Tul.) of New Strains of Wheat, Tsitol. Genet., 1999, vol. 33, no. 6, pp. 25–30.

    Google Scholar 

  21. 21.

    Babayants, L.T., Dubinina, L.A., and Yushchenko, G.M., The Detection of Nonallelic to Known Genes of Resistance to Tilletia caries (DC) Tul. in Wheat Strains from Interspecific Hybridization (Triticum aestivum × Aegilops cylindrica), Tsitol. Genet., 2000, vol. 34, no. 4, pp. 32–41.

    Google Scholar 

  22. 22.

    Babayants, L.T., Miros’, S.L., Totskii, V.N., and Babayants, O.V., Genetic Determination and Inheritance of Resistance to Fusarium graminearum L. in Wheat, Tsitol. Genet., 2001, vol. 35, no. 3, pp. 22–29.

    Google Scholar 

  23. 23.

    Babayants, L.T., Rybalka, A.I., Babayants, O.V., et al., A New Source Material for Breeding Wheat for Resistance to Infectious Agents, in Pshenitsa i tritikale: Materialy nauch.-prakt. konf. (Wheat and Triticale: Proc. Sci.-Pract. Conf.), Krasnodar, 2001, pp. 329–336.

  24. 24.

    Babayants, L.T., Rybalka, A.I., Babayants, O.V., et al., Sources and Donors of New Genes of Resistance to Phytopathogens, in Tr. po fundament. i prikl. genetike (Papers on Fundamental and Applied Genetics), Kharkov: Shtrikh, 2001, pp. 232–241.

    Google Scholar 

  25. 25.

    Tots’kii, V.M., Genetics: A Handbook, Odessa: Astroprint, 2008, pp. 185–235.

    Google Scholar 

  26. 26.

    Babayants, L.T., Meshterkhazi, A., Vekhter, F., et al., Metody selektsii i otsenki ustoichivosti pshenitsy i yachmenya k boleznyam v stranakh-chlenakh SEV (Methods of Selection and Evaluation of Resistance of Wheat and Barley to Diseases in CMEA Countries), Praga, 1988.

  27. 27.

    Rokitskii, P.F., Biologicheskaya statistika (Biological Statistics), Minsk, 1973.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. V. Babayants.

Additional information

Original Russian Text © O.V. Babayants, L.T. Babayants, A.F. Gorash, A.A. Vasil’ev, V.A. Traskovetskaya, V.A. Palyasnyi, 2012, published in Tsitologiya i Genetika, 2012, Vol. 46, No. 1, pp. 10–17.

About this article

Cite this article

Babayants, O.V., Babayants, L.T., Gorash, A.F. et al. Genetic determination of wheat resistance against Puccinia graminis (f. sp. Tritici) derived from Aegilops cylindrica, Triticum erebuni, and amphidiploid 4. Cytol. Genet. 46, 9–14 (2012). https://doi.org/10.3103/S0095452712010033

Download citation

Keywords

  • Wheat Cultivar
  • Wheat Line
  • Effective Ness
  • Stem Rust Resistance Genes
  • Common Bunt