Skip to main content
Log in

Molecular technologies used in detecting of sensitive and isoniazid-resistant Mycobacterium tuberculosis

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Two variants for the detection of single nucleotide polymorphisms in codon 315 of the katG gene of Mycobacterium tuberculosis (MTB) (mutations in this gene are associated with resistance to isoniazid, which is an antituberculosis drug of the first line) have been developed. Two sets of primers, either of which included an additional competitive blocking primer with a 3′-terminal phosphate group (in order to prevent nonspecific amplification), permitted the identification of the most frequent AGC → ACC and AGC → AGA point mutations in codon 315 of the katG gene. Conduction of PCR with a set of two primers, one of which contained five LNA monomers, permitted the detection of any of the six known mutations in codon 315 of the katG gene and, thereby, for the discrimination between isoniazid-sensitive and isoniazid-resistant MTB. The purity and structure of the 17 bp long primers containing LNA-modified nucleotides were characterized by time-of-flight MALDI mass spectrometry, and the 17 bp duplex formed by two LNA-containing complementary oligonucleotides was analyzed by thermal denaturation. The molecular genetic test systems created for differentiating between the wild-type MTB isolates and isoniazid-resistant MTB (an antituberculosis drug of the first line) can be used in clinical laboratories equipped with standard PCR devices; such systems permit the shortening of the time required for the detection of isoniazid resistance of MTB: from 1–3 months by the standard bacteriological methods to 1–3 days by PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sergiev, V.P. and Filatov, N.N., Infektsionnye bolezni na rubezhe vekov. Osoznanie biologicheskoi ugrozy (Infectious Diseases at the Turn of the Century. Awareness of Biological Threats), Moscow: Nauka, 2006.

    Google Scholar 

  2. Global Tuberculosis Control. Epidemiology, Strategy, Financing, Genewa: WHO Press, 2009.

  3. Wu, X., Zhang, J., Liang, J., Lu, Y., Li, H., Li, C., Yue, J., Zhang, L., and Liu, Z., Comparison of Three Methods for Rapid Identification of Mycobacterial Clinical Isolates to the Species Level, J. Clin. Microbiol., 2007, vol. 45, no. 6, pp. 1898–1903.

    Article  PubMed  CAS  Google Scholar 

  4. Mikhailovich, V., Lapa, S., Gryadunov, D., Sobolev, A., Strizhkov, B., Chemyh, N., Skotnikova, O., Irtuganova, O., Moroz, A., Litvinov, V., Vladimirskii, M., Perelman, M., Chernousova, L., Erokhin, V., Zasedatelev, A., and Mirzabekov, A., Identification of Rifampin-Resistant Mycobacterium tuberculosis Strains by Hybridization, PCR, and Ligase Detection Reaction on Oligonucleotide Microchips, J. Clin. Microbiol., 2001, vol 39, no. 7, pp. 2531–2540.

    Article  PubMed  CAS  Google Scholar 

  5. Wu, X., Zhang, J., Chao, L., Liang, J., Lu, Y., Li, H., Yang, Y., Liang, Y., and Li, C., Identification of Rifampin-Resistant Genotypes in Mycobacterium tuberculosis by PCR-Reverse Dot Blot Hybridization, Mol. Biotechnol., 2009, vol. 41, no. 1, pp. 1–7.

    Article  PubMed  Google Scholar 

  6. Kolchinsky, A. and Mirzabekov, A., Analysis of SNPs and Other Genomic Variations Using Gel-Based Chips, Hum. Mutat., 2002, vol. 19, no. 4, pp. 343–360.

    Article  PubMed  CAS  Google Scholar 

  7. Limanskaya, O.Yu., Detection of Wild-Type and Isoniazid-Resistant Mycobacterium tuberculosis Isolates, Tuberkulez Bolezni Legkikh, 2010, no. 9, pp. 45–51.

  8. Orum, H., PCR Clamping, Curr. Issues Mol. Biol., 2000, vol. 2, no. 11, pp. 27–30.

    PubMed  CAS  Google Scholar 

  9. Strand, H., Ingebretsen, O., and Nilssen, O., Real-Time Detection and Quantification of Mitochondrial Mutations with Oligonucleotide Primers Containing Locked Nucleic Acid, Clin. Chim. Acta, 2008, vol. 390, nos. 1/2, pp. 126–133.

    Article  PubMed  CAS  Google Scholar 

  10. Dominguez, P. and Kolodney, M., Wild-Type Blocking Polymerase Chain Reaction for Detection of Single Nucleotide Minority Mutations from Clinical Specimens, Oncogene, 2005, vol. 24, no. 45, pp. 6830–6834.

    Article  PubMed  CAS  Google Scholar 

  11. Lipin, M., Stepanshina, V., Shemyakin, I., and Shirmick, T., Association of Specific Mutations in KatG, RpoB, RpsL, and Rrs Genes with Spoligotypes of Multidrug-Resistant Mycobacterium tuberculosis Isolates in Russia, Clin. Microbiol. Infect., 2007, no. 13, pp. 620–626.

  12. Nizova, A.V., Stepanshina, V.N., Majskaya, N.V., Bogun, A.G., Majorov, A.A., and Shemyakin, I.G., Analysis of Resistance for Clinical Strains of Mycobacterium tuberculosis to Drug of the First and Second Lines, Epidem. Infec. Dis., 2007, no. 4, pp. 7–10.

  13. Josefsen, M., Lofstrom, C., Sommer, H., and Hoorfar, J., Diagnostic PCR: Comparative Sensitivity of Four Probe Chemistries, Mol. Cell Probes, 2009, vol. 23, nos. 3/4, pp. 201–203.

    Article  PubMed  CAS  Google Scholar 

  14. Brodskii, L.I., Drachev, A.L., Tatuzov, R.L., and Chumakov, K.M., The GeneBee Software Package for Biopolymer Sequence Analysis, Biopolim. Kletka, 1991, no. 1, pp. 10–14.

  15. Von Ahsen, N., Wittwer, C., and Schutz, E., Oligonucleotide Melting Temperatures under PCR Conditions: Nearest-Neighbour Corrections for Mg2+, Deoxynucleotide Triphosphate, and Dimethyl Sulfoxide Concentrations with Comparison to Alternative Empirical Formulas, Clin. Chem., 2001, vol. 47, no. 11, pp. 1956–1961.

    Google Scholar 

  16. Il’ina, E.H. and Govorun, V.M., Mass Spekgrometry of Nucleic Acids in Molecular Medicine, Russ. J. Bioorg. Chem., 2009, vol. 35, no. 2, pp. 149–164.

    Google Scholar 

  17. Sauer, S., The Essence of DNA Sample Preparation for MALDI Mass Spectrometry, J. Biochem. Biophys. Meth., 2007, vol. 70, no. 2, pp. 311–318.

    Article  PubMed  CAS  Google Scholar 

  18. Humeny, A., Bonk, T., Berkholz, A., Wildt, L., and Becker, C.-M., Genotyping of Thrombotic Risk Factors by MALDI-TOF Mass Spectrometry, Clin. Biochem., 2001, vol. 34, no. 6, pp. 531–536.

    Article  PubMed  CAS  Google Scholar 

  19. Vol’kenshtein, M.V., Biofizika (Biophysics), Moscow: Nauka, 1981.

    Google Scholar 

  20. Helb, D., Jones, M., Story, E., Boehme, C., Wallace, E., Ho, K., Kop, J., Owens, M., Rodgers, R., Banada, P., Safi, H., Blakemore, R., Lan, N., Jones-Lorpez, E., Levi, M., Burday, M., Ayakaka, I., Mugerwa, R., McMillan, B., Winn-Deen, E., Christel, L., Dailey, P., Perkins, M., Persing, D., and Attand, D., Rapid Detection of Mycobacterium Tuberculosis and Rifampin Resistance by Use of on-Demand, Near-Patient Technology, J. Clin. Microbiol., 2010, vol. 48, no. 1, pp. 229–237.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Limanskaya.

Additional information

Original Ukrainian Text © O.Yu. Limanskaya, O.P. Limanskii, 2011, published in Tsitologiya i Genetika, 2011, Vol. 45, No. 6, pp. 34–47.

About this article

Cite this article

Limanskaya, O.Y., Limanskii, O.P. Molecular technologies used in detecting of sensitive and isoniazid-resistant Mycobacterium tuberculosis . Cytol. Genet. 45, 362–372 (2011). https://doi.org/10.3103/S0095452711060041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452711060041

Keywords

Navigation