Homeotic genes and their role in development of morphological traits in wheat

Abstract

Information about main families of plant homeotic genes, ways of their activity regulation, and role in morphogenesis is presented. The role of known homeotic genes in wheat development and possible participation of homeotic genes in the development of main morphological traits of this species is discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Carroll, S.B., Grenier, J.K., and Weatherbee, S.D., From DNA to Diversity. Malden: Blackwell Sci, 2001, pp. 178–179.

  2. 2.

    Preston, J.C. and Kellogg, E.A., Reconstructing the Evolutionary History of Paralogous APETALA1/FRUTFULL-Like Genes in Grasses (Poaceae), Genetics, 2006, vol. 174, pp. 421–437.

    PubMed  CAS  Google Scholar 

  3. 3.

    Lewis, E.B., A Gene Complex Controlling Segmentation in Drosophila, Nature, 1978, vol. 276, pp. 565–570.

    PubMed  CAS  Google Scholar 

  4. 4.

    Gehring, W.J., Affolter, M., and Burglin, T.R., Homeodomain Proteins, Annu. Rev. Biochem., 1994, vol. 63, pp. 487–526.

    PubMed  CAS  Google Scholar 

  5. 5.

    Burglin, T.R. and Cassata, G., Loss and Gain of Domains during Evolution of Cut Superclass Homeobox Genes, Int. J. Dev. Biol., 2002, vol. 46, pp. 115–123.

    PubMed  CAS  Google Scholar 

  6. 6.

    Shitsukawa, N., Kinjo, K., Takumi, S., and Murai, K., Heterochronic Development of the Floret Meristem Determines Grain Number per Spikelet in Diploid, Tetraploid and Hexaploid Wheats, Ann. Bot., 2009, vol. 104, pp. 243–251.

    PubMed  Google Scholar 

  7. 7.

    Li, X., Qian, Q., and Fu, Zh., Control of Tillering in Rice, Nature, 2003, vol. 422, pp. 618–621.

    PubMed  CAS  Google Scholar 

  8. 8.

    Simons, K.J., Fellers, J.P., Trick, H.N., et al., Molecular Characterization of the Major Wheat Domestication Gene Q, Genetics, 2006, vol. 172, pp. 546–555.

    Google Scholar 

  9. 9.

    Gilsinger, J., Kong, L., Shen, X., and Ohm, H., DNA Markers Associated with Low Fusarium Head Blight Incidence and Narrow Flower Opening in Wheat, Theor. Appl. Genet., 2005, vol. 110, pp. 1218–1225.

    PubMed  CAS  Google Scholar 

  10. 10.

    Vdovichenko, Zh.V., Zlatskaya, A.V., and Ternovskaya, T.K., New Morphological Marker for Chromosomes of the Fourth Homologous Group of Triticinae, Tsitol. Genet., 2001, vol. 35, no. 1, pp. 28–33.

    PubMed  CAS  Google Scholar 

  11. 11.

    Ji, H.-S., Chu, S.-H., Jiang, W., et al., Characterization and Mapping of a Shattering Mutant in Rice That Corresponds to a Block of Domestication Genes, Genetics, 2006, vol. 173, pp. 995–1005.

    PubMed  CAS  Google Scholar 

  12. 12.

    McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D., and Rogers, W.J., Catalogue of Gene Symbols for Wheat, in Proc. 9th Int. Wheat Genet. Symp., Saskatoon: Univ. Extension Press, 1998, vol. 5, pp. 1–236.

    Google Scholar 

  13. 13.

    Franckowiak, J.D., Revised Linkage Maps for Morphological Markers in Barley, Hordeum vulgare, Barley Genet. Newsl., 1996, vol. 26, pp. 4–6.

    Google Scholar 

  14. 14.

    Nagaraja, R.R., Murali, S.M., Madhusudhana, R., et al., Inheritance of Morphological Characters in Sorghum, SAT eJournal, 2008, vol. 6, pp. 1–3.

    Google Scholar 

  15. 15.

    Muller, J., Wang, Y., Franzen, R., et al., In vitro Interactions between Barley TALE Homeodomain Proteins Suggest a Role for Protein-Protein Associations in the Regulation of Knox Gene Function, Plant J., 2001, vol. 27, no. 1, pp. 13–23.

    PubMed  CAS  Google Scholar 

  16. 16.

    Goto, K., Molecular and Genetic Analyses of Flower Homeotic Genes in Arabidopsis, J. Biosci., 1996, vol. 21, no. 3, pp. 369–378.

    Google Scholar 

  17. 17.

    De Folter, S., Immink, R.G.H., and Kieffer, M., Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors, Plant Cell, 2005, vol. 17, pp. 1424–1433.

    PubMed  Google Scholar 

  18. 18.

    Thompson, B.E. and Hake, S., Translational Biology: From Arabidopsis Flowers Grass Inflorescence Architecture, Plant Physiol., 2009, vol. 149, pp. 38–45.

    PubMed  CAS  Google Scholar 

  19. 19.

    Lawton-Rauh, A.L., Alvarez-Buylla, E.R., and Purugga-nan, M.D., Molecular Evolution of Flower Development, Trends Ecol. Evol., 2000, no. 4, pp. 144–149.

  20. 20.

    Vollbrecht, E., Veit, B., Sinha, N., and Hake, S., The Developmental Gene Knotted-1 Is a Member of a Maize Homeobox Gene Family, Nature, 1991, vol. 350, pp. 241–243.

    PubMed  CAS  Google Scholar 

  21. 21.

    Murai, K., Murai, R., and Ogihara, Ya., Wheat MADS Box Genes, a Multigene Family Dispersed throughout the Genome, Genes Genet. Syst., 1997, vol. 72, pp. 317–321.

    PubMed  CAS  Google Scholar 

  22. 22.

    Murai, K., Miyamae, M., Kato, H., et al., WAP1, a Wheat Apetala 1 Homolog, Plays a Central Role in the Phase Transition from Vegetative to Reproductive Growth, Plant Cell Physiol., 2003, vol. 44, pp. 1255–1265.

    PubMed  CAS  Google Scholar 

  23. 23.

    Shitsukawa, N., Takagishi, Ai., Ikari, Ch., Takumi, S., and Murai, K., WFL, a Wheat FLORICAULA/LEAFY Ortholog, Is Associated with Spekelet Formation As Lateral Branch of the Inflorescence Meristem, Genes. Genet. Syst, 2006, pp. 13–20.

  24. 24.

    Shitsukawa, N., Kinjo, K., Takumi, S., and Murai, K., Heterochronic Development of the Floret Meristem Determines Grain Number per Spikelet in Diploid, Tetraploid and Hexaploid Wheats, Ann. Bot., vol. 104, 2009, pp. 243–251.

    PubMed  Google Scholar 

  25. 25.

    Yan, L., Loukoianov, A., Tranquilli, G., et al., Positional Cloning of the Wheat Vernalization Gene VRN1, Proc. Nat. Acad. Sci. USA, 2003, vol. 100, pp. 6263–6268.

    PubMed  CAS  Google Scholar 

  26. 26.

    Shimada, S., Ogawa, T., Kitagawa, S., et al., A Genetic Network of Flowering-Time Genes in Wheat Leaves, in Which APETALA1/FRUITFUL-Like Gene, VRN1, Is Upstream of FLOWERING LOCUS T, Plant J., 2009, vol. 28, pp. 668–681.

    Google Scholar 

  27. 27.

    Williams-Carrier, R., Lie, Yu., Hake, S., and Lemaux, P., Ectopic Expression of the Maize Kn 1 Gene Phenocopies the Hooded Mutant of Barley, Development, 1997, vol. 224, pp. 3737–3745.

    Google Scholar 

  28. 28.

    Chuck, G., Meeley, R., and Hake, S., The Control of Maize Spikelet Meristem Fate by the APETALA2-Like Gene Indeterminate Spikelet, Dev., 1998, vol. 12, pp. 1145–1154.

    CAS  Google Scholar 

  29. 29.

    Postma-Haarsma, D., Verwoert, I.I.G.S., Stronk, O.P., et al., Characterization of the KNOX Class Homeobox Genes Oskn2 and Oskn3 Identified in a Collection of CDNA Libraries Covering the Early Stages of Rice Embryogenesis, Plant. Mol. Biol., 1999, vol. 39, pp. 257–271.

    PubMed  CAS  Google Scholar 

  30. 30.

    Fornara, F., Parenicove, L., Falasca, G., et al., Functional Characterization of OSMADS18, a Member of the AP1/SQUA Subfamily of MADS Box Genes, Plant Psysiol., 2004, vol. 135, pp. 2207–2219.

    CAS  Google Scholar 

  31. 31.

    Thompson, B.E., Bartling, L., Whipple, C., et al., Beardedear Encodes a MADS Box Transcription Factor Critical for Maize Floral Development, Plant Cell, 2009, vol. 21, pp. 2578–2590.

    PubMed  CAS  Google Scholar 

  32. 32.

    Feuillet, C. and Keller, B., Comparative Genomics in the Grass Family: Molecular Characterization of Grass Genome Structure and Evolution, Ann. Bot., 2002, vol. 89, pp. 3–10.

    PubMed  CAS  Google Scholar 

  33. 33.

    Faris, J.D., Zhang, Z., Fellers, J.P., and Gil, B.S., Microcollinearity between Rice, Brachipodium and T. monococcum at the Wheat Domestication Locus Q, Func. Integr. Genom, 2008, vol. 8, pp. 149–164.

    CAS  Google Scholar 

  34. 34.

    Ruberti, I., Sessa, G., Lucchetti, S., and Morelli, G., A Novel Class of Plant Proteins Containing a Homeodomain with a Closely Linked Leucine Zipper Motif, EMBO J., 1991, vol. 10, pp. 1787–1791.

    PubMed  CAS  Google Scholar 

  35. 35.

    Bharathan, G., Janssen, B.J., Kellogg, E.A., and Sinha, N., Did Homeodomain Proteins Duplicate before the Origin of Angiosperms, Fungi, and Metazoa?, Proc. Nat. Acad. Sci. USA, 1997, vol. 94, pp. 13749–13753.

    PubMed  CAS  Google Scholar 

  36. 36.

    Meijer, A.H., Scarpella, E., van Dijk, E.L., et al., Transcriptional Repression by Oshox1, a Novel Homeodomain Leucine Zipper Protein from Rice, Plant J., 1997, vol. 11, pp. 263–276.

    PubMed  CAS  Google Scholar 

  37. 37.

    Chan, R.L., Gago, G.M., Palena, C.M., and Gonzalez, D.H., Homeoboxes in Plant Development, Biochim. Biophys. Acta, 1998, vol. 1442, pp. 1–19.

    PubMed  CAS  Google Scholar 

  38. 38.

    Kimura, S., Koenig, D., Kang, J., et al., Natural Variation in Leaf Morphology Results from Mutation of a Novel KNOX Gene, Curr. Biol., 2008, vol. 18, pp. 672–677.

    PubMed  CAS  Google Scholar 

  39. 39.

    Mukherjee, K. and Burglin, T.R., MEKHLA, a Novel Domain with Similarity to PAS Domains, Is Fused to Plant Homeodomain-Leucine Zipper III Proteins, Plant Physiol., 2006, vol. 140, pp. 1142–1150.

    PubMed  CAS  Google Scholar 

  40. 40.

    Mukherjee, K., Brocchieri, L., and Burglin, T.R., A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes, Mol. Biol. Evol., 2009, vol. 26, no. 12, pp. 2775–2794.

    PubMed  CAS  Google Scholar 

  41. 41.

    Burglin, T.R., Analysis of TALE Superclass Homeobox Genes (MEIS, PBC, KNOX, Iroquois, TGIF) Reveals a Novel Domain Conserved between Plants and Animals, Nucleic Acids Res., 1997, vol. 25, pp. 4173–4180.

    PubMed  CAS  Google Scholar 

  42. 42.

    Aso, K., Kato, M., Banks, J.A., and Hasebe, M., Characterization of Homeodomain-Leucine Zipper Genes in the Fern Ceratopteris richardii and the Evolution of the Homeodomain-Leucine Zipper Gene Family in Vascular Plants, Mol. Biol. Evol., 1999, vol. 16, pp. 544–552.

    PubMed  CAS  Google Scholar 

  43. 43.

    Hay, A. and Tsiantis, M., A KNOX Family TALE, Curr. Opin. Plant Biol., 2009, vol. 12, no. 5, pp. 593–598.

    PubMed  CAS  Google Scholar 

  44. 44.

    Shore, P. and Sharrocks, A.D., The MADS-Box Family of Transcription Factors, Eur. J. Biochem., 1995, vol. 229, pp. 1–13.

    PubMed  CAS  Google Scholar 

  45. 45.

    West, A.G., Causier, B.E., Davies, B., and Sharrocks, A.D., DNA Binding and Dimerization Determinants of Antirrhinum majus MADS-Box Transcription Factors, Nucleic Acids Res., 1998, vol. 26, pp. 5277–5287.

    PubMed  CAS  Google Scholar 

  46. 46.

    Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., et al., MADS-Box Gene Evolution beyond Flowers: Expression in Pollen, Endosperm, Guard Cells, Roots and Trichomes, Plant J., 2000, vol. 24, no. 4, pp. 457–466.

    PubMed  CAS  Google Scholar 

  47. 47.

    Gutierrez-Cortines, M. and Davis, B., Beyond the ABCs: Ternary Complex Formation in the Control of Floral Organ Identity, Trends Plant Sci., 2000, vol. 5, pp. 471–476.

    PubMed  CAS  Google Scholar 

  48. 48.

    Weigel, D. and Meyerowitz, E.M., The ABCs of Floral Homeotic Genes, Cell, 1994, vol. 78, pp. 203–209.

    PubMed  CAS  Google Scholar 

  49. 49.

    Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F., B and C Floral Organ Identity Functions Require SEPALLATA MADS-Box Genes, Nature, 2000, vol. 405, pp. 200–203.

    PubMed  CAS  Google Scholar 

  50. 50.

    Honma, T. and Goto, K., Complexes of MADS-Box Proteins Are Sufficient to Convert Leaves into Floral Organs, Nature, 2001, vol. 409, pp. 525–529.

    PubMed  CAS  Google Scholar 

  51. 51.

    Yoshida, A., Suzaki, T., Tanaka, W., and Hirano, H.-Y., The Homeotic Gene Long Sterile Lemma (G1) Specifies Sterile Lemme Identity in the Rice Spikelet, Proc. Nat. Acad. Sci. USA, 2009, vol. 106, no. 47, pp. 20109–20108.

    Google Scholar 

  52. 52.

    Lucas, W.J., Bouche-Pillon, S., Jackson, D.P., et al., Selective Trafficking of KNOTTED1 Homeodomain Protein and Its mRNA through Plasmodesmata, Science, 1995, vol. 270, pp. 1980–1983.

    PubMed  CAS  Google Scholar 

  53. 53.

    Perbal, M.C., Haughn, G., Saedler, H., and Schwarz-Sommer, Z., Non-Cell-Autonomous Function of the Antirrhinum Floral Homeotic Proteins DEFICIENS and GLOBOSA Is Exerted by Their Polar Cell-to-Cell Trafficking, Development, 1996, vol. 122, pp. 3433–3441.

    PubMed  CAS  Google Scholar 

  54. 54.

    Stuurman, J., Juggi, F., and Kuhlemeier, C., Shoot Meristem Maintenance Is Controlled by a GRAS-Gene Mediated Signal from Differentiating Cells, Dev., 2002, vol. 16, pp. 2213–2218.

    CAS  Google Scholar 

  55. 55.

    Gallagher, K.L. and Benfey, Ph.N., Both the Conserved GRAS Domain and Nuclear Localization Are Required for SHORT-ROOT Movement, Plant J., 2009, vol. 57, no. 5, pp. 785–797.

    PubMed  CAS  Google Scholar 

  56. 56.

    Timmermans, M., Hudson, A., Becraft, P., and Nelson, T., ROUGH SHEATH2: A Myb Protein That Represses Knox Homeobox Genes in Maize Lateral Organ Primordial, Science, 1999, vol. 284, pp. 151–153.

    PubMed  CAS  Google Scholar 

  57. 57.

    Santi, L., Wang, Y., Stile, M.R., et al., The GA Oligonucleotide Repeat Binding Factor BBR Participates in the Transcriptional Regulation of the Homeobox Gene Bkn3, Plant J., 2003, vol. 34, pp. 813–826.

    PubMed  CAS  Google Scholar 

  58. 58.

    Noguiera, F.T.S., Madi, S., Chitwood, D.H., et al., Two Small Regulatory RNAs Establish Opposing Fates of a Developmental Axis, Development, 2007, vol. 21, pp. 750–755.

    Google Scholar 

  59. 59.

    Husbands, A., Chitwood, D.H., Plavskin, Ye., and Timmermans, M., Signals and Repatterns: New Insights into Organ Polarity in Plants, Dev., 2009, vol. 23, pp. 1986–1997.

    CAS  Google Scholar 

  60. 60.

    Girin, T., Sorefan, K., and Ostergaard, L., Meristematic Sculpting in Fruit Development, J. Exp. Bot., 2009, vol. 60, no. 5, pp. 1493–1502.

    PubMed  CAS  Google Scholar 

  61. 61.

    Scofield, S. and Murray, J.A.H., KNOX Gene Function in Plant Stem Cell Niches, Plant. Mol. Biol., 2006, vol. 60, pp. 929–946.

    PubMed  CAS  Google Scholar 

  62. 62.

    Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S., and Matsuoka, M., KNOX Homeodomain Protein Directly Suppresses the Expression of a Gibberellin Biosynthetic Gene in the Tobacco Shoot Apical Meristem, Development, 2001, vol. 15, pp. 581–590.

    CAS  Google Scholar 

  63. 63.

    Sears, E.R., Homeologous Chromosomes in Triticum aestivum, Genetics, 1952, vol. 37, p. 624.

    Google Scholar 

  64. 64.

    Sears, E.R., Nullisomic-Tetrasomic Combinations in Hexaploid Wheat, in Chromosome Manipulations and Plant Genetics, Riley, R. and Lewis, K.R., Eds., Edinburgh: Oliver and Boyd, 1966, pp. 22–45.

    Google Scholar 

  65. 65.

    Sears, E.R., An Induced Mutant with Homeologous Pairing Common Wheat, Can. J. Genet. Cytol., 1977, vol. 19, pp. 585–593.

    Google Scholar 

  66. 66.

    Backhouse, W.O., Note on the Inheritance of Crossability, J. Genet, 1916, vol. 6, pp. 91–94.

    Google Scholar 

  67. 67.

    Sitch, L.A., Snape, J.W., and Firman, S.J., Intra-Chromosomal Mapping of Crossability Genes in Wheat (Triticum aestivum), Theor. Appl. Genet., 1985, vol. 70, pp. 309–314.

    Google Scholar 

  68. 68.

    Watanabe, N., Nakayama, A., and Ban, T., Cytological and Microsatellite Mapping of the Genes Determining Liguleless Phenotype in Durum Wheat, Euphytica, 2004, vol. 140, pp. 163–170.

    CAS  Google Scholar 

  69. 69.

    Ozkan, H., Levy, A.A., and Feldman, M., Allopolyploidy Induced Rapid Genome Evolution in the (Aegilops-Triticum) Group, Plant Cell, 2001, vol. 13, pp. 1735–1747.

    PubMed  CAS  Google Scholar 

  70. 70.

    Morimoto, R., Kosugi, T., Nakamura, Ch., and Takumi, Sh., Intragenic Diversity and Functional Conservation of the Three Homoecologous Loci of the KN1-Type Homeobox Gene Wknox1 in Common Wheat, Plant. Mol. Biol., 2005, vol. 57, pp. 907–924.

    PubMed  CAS  Google Scholar 

  71. 71.

    Shitsukawa, N., Tahira, C., Kassai, K., et al., Genetic and Epigenetic Alteration between Three Homeologous Genes of a Class E MADS Box Gene in Hexaploid Wheat, Plant Cell, 2007, vol. 19, pp. 1723–1737.

    PubMed  CAS  Google Scholar 

  72. 72.

    Meguro, A., Takumi, Sh., Ogihara, Ya., and Murai, K., WAG, a Wheat AGAMOUS Homolog, Is Associated with Development of Pistil-Like Stamens in Alloplasmic Wheats, Sexual Plant Reprod., 2003, vol. 15, no. 5, pp. 221–230.

    CAS  Google Scholar 

  73. 73.

    Mizumoto, K., Hatano, H., Chirabayashi, C., et al., Altered Expression of Wheat AINTEGUMENTA Homolog, WANT-1, in Pistil and Pistil-Like Transformed Stamen of an Alloplasmic Line with Aegilops crassa Cytoplasm, Dev. Genes. Evol., 2009, vol. 219, pp. 175–187.

    PubMed  CAS  Google Scholar 

  74. 74.

    Sood, Sh., Kuraparthy, V., Bai, G., and Gill, B.S., The Major Threshability Genes Soft Glume (Sog) and Tenacious Glume (Tg), of Diploid and Polyploid Wheat, Trace Their Origin to Independent Mutations at Non-Orthologous Loci, Theor. Appl. Genet., 2009, vol. 119, pp. 341–351.

    PubMed  Google Scholar 

  75. 75.

    Spielmeyer, W. and Richards, R.A., Comparative Mapping of Wheat Chromosome 1AS Which Contains the Tiller Inhibition Gene (Tin) with Rice Chromosome 5S, Theor. Appl. Genet., 2004, vol. 109, pp. 1303–1310.

    PubMed  CAS  Google Scholar 

  76. 76.

    Jeon, J.S., Jang, S., Lee, S., et al., Leafy Hull Sterile 1 Is a Homeotic Mutation in a Rice MADS Box Gene Affecting Rice Flower Development, Plant Cell, 2000, vol. 12, pp. 871–874.

    PubMed  CAS  Google Scholar 

  77. 77.

    Morimoto, R., Nishioka, W., Murai, K., and Takumi, S., Functional Conservation of Wheat Orthologs of Maize Rough Sheath1 and Rough Sheath2 Genes, Plant. Mol. Biol., 2009, vol. 69, pp. 273–285.

    PubMed  CAS  Google Scholar 

  78. 78.

    Kerstetter, R., Vollbrecht, E., Lowe, R., et al., Sequence Analysis and Expression Patterns Divide Maize KNOTTED-1 Like Genes into 2 Classes, Plant Cell, 1994, vol. 6, pp. 1877–1887.

    PubMed  CAS  Google Scholar 

  79. 79.

    Theodoris, G., Inada, N., and Freeling, M., Conservation and Molecular Dissection of ROUGH SHEATH and ASSYMETRIC LEAVES1 Function in Leaf Development, Proc. Nat. Acad. Sci. USA, 2003, vol. 100, no. 11, pp. 6837–6842.

    PubMed  CAS  Google Scholar 

  80. 80.

    Takumi, Sh., Kosugi, T., Murai, K., Mori, N., and Nakamura, Ch., Molecular Cloning of Three Homoeologous cDNAs Encoding Orthologs of the KNOTTED1 Homeobox Protein from Young Spikes of Hexaploid Wheat, Gene, 2000, vol. 249, pp. 171–181.

    PubMed  CAS  Google Scholar 

  81. 81.

    Pozzi, C., di Pietro, D., Halas, G., and Salamini, F., Integration of Barley (Hordeum vulgare) Molecular Linkage Map with the Position of Genetic Loci Hosting 29 Developmental Mutants, Heredity, 2003, vol. 90, pp. 390–396.

    PubMed  CAS  Google Scholar 

  82. 82.

    Muller, K., Romano, N., Gerstner, O., et al., The Barley Hooded Mutation Caused by a Duplication in a Homeobox Gene Intron, Nature, 1995, vol. 374, pp. 727–730.

    PubMed  CAS  Google Scholar 

  83. 83.

    Hay, A. and Hake, S., The Dominant Mutant Wavy Auricle in Blade1 Disrupts Patterning in a Lateral Domain of the Maize Leaf, Plant Physiol., 2004, vol. 135, pp. 300–308.

    PubMed  CAS  Google Scholar 

  84. 84.

    Sentoku, N., Sato, Y., Kurata, N., et al., Regional Expression of the Rice KN1-Type Homeobox Gene Family During Embryo, Shoot, and Flower Development, Plant Cell, 1999, vol. 11, pp. 1651–1663.

    PubMed  CAS  Google Scholar 

  85. 85.

    Wang, D., Sun, Sh.-X., and Gao, F.-Yu., Mapping a Rice Glabrous Gene using Simple Sequence Repeat Markers, Rice Sci., 2009, vol. 16, no. 2, pp. 93–98.

    Google Scholar 

  86. 86.

    Yamaguchi, T. and Tsukaya, H., Evolutionary and Developmental Studies of Unifacial Leaves in Monocots: Juncus as a Model System, J. Plant Res., 2010, vol. 123, pp. 35–41.

    PubMed  Google Scholar 

  87. 87.

    Tsukaya, H., Developmental Genetics of Leaf Morphogenesis in Dicotyledonous Plants, J. Plant Res., 1995, vol. 108, pp. 407–416.

    Google Scholar 

  88. 88.

    Moreno, M.A., Harper, L.C., Krueger, R.W., Dellaporta, S.L., and Freeling, M., Liguleless Encodes a Nuclear-Localized Protein Required for Induction of Ligules and Auricles during Maize Leaf Organogenesis, Genes Dev., 1997, vol. 11, pp. 616–628.

    PubMed  CAS  Google Scholar 

  89. 89.

    Walsh, J., Waters, C.A., and Freelinh, M., The Maize Gene Liguleless2 Encodes a Basic Leucine Zipper Protein Involved in the Establishment of the Leaf Blade-Sheath Boundary, Genes Dev., 1997, vol. 11, pp. 208–218.

    Google Scholar 

  90. 90.

    Pratchett, N. and Laurie, D.A., Genetic Map Location of the Barley Developmental Mutant Liguleless in Relation to RFLP Markers, Hereditas, 1994, vol. 120, pp. 135–139.

    Google Scholar 

  91. 91.

    Korzun, V., Malyshev, S., Voylokov, A., and Borner, A., RFLP-Based Mapping of Three Mutant Loci in Rye (Secale cereale L.) and Their Relation to Homoeologous Loci within the Gramineae, Theor. Appl. Genet., 1997, vol. 95, pp. 468–473.

    CAS  Google Scholar 

  92. 92.

    Ternovskaya, T.K., Common Wheat Genome D: Inheritance of Some Traits of Ear Morphology, Tsitol. Genet., 1997, vol. 31, no. 4, pp. 11–18.

    Google Scholar 

  93. 93.

    Antonyuk, M.Z. and Ternovskaya, T.K., Morphological Traits of Plants as mMarkers of Homeological Groups of Triticeae Chromosomes, Tsitol. Genet., 1997, vol. 31, no. 4, pp. 105–112.

    Google Scholar 

  94. 94.

    Davoyan, R.O. and Ternovskaya, T.K., Use of a Synthetic Hexaploid Triticum miguschovae for Transfer of Leaf Rust Resistance to Common Wheat, Euphytica, 1996, vol. 89, no. 1, pp. 286–290.

    Google Scholar 

  95. 95.

    Wang, S., Kwak, S.-H., Zeng, Q., et al., TRICHOMELESS1 Regulates Trichome Patterning by Suppressing GLABRA1 in Arabidopsis, Development, 2007, vol. 134, pp. 3873–3882.

    PubMed  CAS  Google Scholar 

  96. 96.

    Machado, A., Wu, Y., Yang, Y., et al., The MYB Transcription Factor GhMYB25 Regulates Early Fibre and Trichome Development, Plant J., 2009, vol. 59, no. 1, pp. 52–62.

    PubMed  CAS  Google Scholar 

  97. 97.

    Henriksson, E., Olsson, A.S.B., Johannesson, H., et al., Homeodomain Leucine Zipper Class I Genes in Arabidopsis. Expression Patterns and Phylogenetic Relationships, Plant Physiol., 2005, vol. 139, pp. 509–518.

    PubMed  CAS  Google Scholar 

  98. 98.

    Moose, S.P., Lauter, N., and Carlson, S.R., The Maize Macrohairless1 Locus Specifically Promotes Leaf Blade Macrohairless1 Initiation and Responds to Factors Regulating Leaf Identity, Genetics, 2004, vol. 166, pp. 1451–1461.

    PubMed  CAS  Google Scholar 

  99. 99.

    Wu, G., Wilson, W.L., and McClung, A.M., Contribution of Rice Tillers to Dry Matter Accumulation and Yield, Agron. J., 1998, vol. 90, pp. 317–323.

    Google Scholar 

  100. 100.

    Kuraparthy, V., Sood, S., Chhuneja, H.S.D.P., and Gill, B.S., Identification and Mapping of a Tiller Inhibition Gene (Tin3) in Wheat, Theor. Appl. Genet., 2007, vol. 114, pp. 285–294.

    PubMed  CAS  Google Scholar 

  101. 101.

    Buck-Sorlin, G.H., The Search for QTL in Barley (Hordeum vulgare L.) using a New Mapping Population, Cell Mol. Biol. Lett., 2002, vol. 7, pp. 523–535.

    PubMed  CAS  Google Scholar 

  102. 102.

    Wu, W.R., Li, W.M., Tang, D.Z., et al., Time-Related Mapping of Quantitative Trait Loci Underlying Tiller Number in Rice, Genetics, 1999, vol. 151, pp. 297–303.

    PubMed  CAS  Google Scholar 

  103. 103.

    Fujita, D., Ebron, L.A., Araki, E., et al., Fine Mapping of a Gene for Low-Tiller Number, Ltn, in Japonica Rice (Oryza sativa L.) Variety Aikawa 1, Theor. Appl. Genet., 2010, vol. 120, pp. 1233–1240.

    PubMed  CAS  Google Scholar 

  104. 104.

    Komatsu, K., Maekawa, M., Ujiie, S., et al., LAX and SPA: Major Regulators of Shoot Branching in Rice, Proc. Nat. Acad. Sci. USA, 2003, vol. 100, no. 20, pp. 11765–11770.

    PubMed  CAS  Google Scholar 

  105. 105.

    Fernandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F., Redundant Regulation of Meristem Identity and Plant Architecture by FRUITFUL, APETALA1, and CAULIFLOWER, Development, 2000, vol. 127, pp. 725–734.

    Google Scholar 

  106. 106.

    Litt, A. and Irish, V.F., Duplication and Diversification in the APETLA1/FRUITFUL Floral Homeotic Gene Lineage: Implications for the Evolution of Floral Development, Genetics, 2003, vol. 165, pp. 821–833.

    PubMed  CAS  Google Scholar 

  107. 107.

    Yamaguchi, T. and Hirano, H.-Y., Function and Diversification of MADS-Box Genes in Rice, Sci. World J., 2006, vol. 6, pp. 1923–1932.

    Google Scholar 

  108. 108.

    Johansen, B., Frederiksen, S., and Skipper, M., Molecular Basis of Development in Petaloid Monocots Flowers, ALISO, 2006, vol. 22, pp. 151–158.

    Google Scholar 

  109. 109.

    Muramatsu, M., Dosage Effect of the Spelta Gene Q of Hexaploid Wheat, Genetics, 1963, vol. 48, pp. 469–482.

    PubMed  CAS  Google Scholar 

  110. 110.

    Muramatsu, M., The Vulgare Super Gene, Q: Its Universality in Durum Wheat and Its Phenotypic Effects in Tetraploid and Hexaploid Wheats, Can. J. Genet. Cytol., 1986, vol. 28, pp. 30–41.

    Google Scholar 

  111. 111.

    Faris, J.D., Fellers, J.P., Brooks, S.A., and Gill, B.S., A Bacterial Artificial Chromosome Contig Spanning the Major Domestication Locus Q in Wheat and Identification of a Candidate Gene, Genetics, 2003, vol. 164, pp. 311–321.

    PubMed  CAS  Google Scholar 

  112. 112.

    Murai, K., Takumi, S., Koga, H., and Ogihara, Y., Pistilloidy, a Homeotic Transformation of Stamens into Pistil-Like Structures, Caused by Nuclear-Cytoplasm Interaction in Wheat, Plant J., 2002, vol. 29, pp. 169–181.

    PubMed  Google Scholar 

  113. 113.

    Trevaskis, B., Bagnall, D.J., Ellis, M.H., Peacock, W.J., and Dennis, E.S., MADS Box Genes Control Vernalization-Induced Flowering in Cereals, Proc. Nat. Acad. Sci. USA, 2003, vol. 100, pp. 13099–13104.

    PubMed  CAS  Google Scholar 

  114. 114.

    Shimada, S., Ogawa, T., Kitagawa, S., et al., A Genetic Network of Flowering-Time Genes in Wheat Leaves, in Which APETALA1/FRUTFUL-Like Gene, VRN1, Is Upstream of FLOWERING LOCUS T, Plant J., 2009, vol. 58, pp. 668–681.

    PubMed  CAS  Google Scholar 

  115. 115.

    Zohary, D. and Hopf, M., Domestication of Plants in the Old World, New York: Oxford Univ. Press, 2000, p. 134.

    Google Scholar 

  116. 116.

    Komatsuda, T., Pourkheirandish, M., He, C., et al., Six-Rowed Barley Originated from a Mutation in a Homeodomainleucine Zipper I-Class Homeobox Gene, Proc. Nat. Acad. Sci. USA, 2007, vol. 104, no. 4, pp. 1427–1429.

    Google Scholar 

  117. 117.

    Sears, E.R., The Sphaerococcum Gene in Wheat, Rec. Genet. Soc. Amer., 1946, vol. 15, pp. 65–66.

    Google Scholar 

  118. 118.

    Azhaguvel, P. and Komatsuda, T., A Phylogenetic Analysis Based on Nucleotide Sequence of a Marker Linked to the Brittle Rachis Locus Indicates a Diphyletic Origin of Barley, Ann. Bot., 2007, vol. 129, pp. 1–7.

    Google Scholar 

  119. 119.

    Zimmerman, J.G., Anatomische und Morphologische Untursuchungen uber die Buchigskeit der Aherspindel in der Gattung Triticum, Zucht. Reiche A Pflanzenzucht, 1934, vol. 19, pp. 164–182.

    Google Scholar 

  120. 120.

    Matsumoto, K., Teremura, T., and Tabushi, J., Development Analysis of the Rachis Disarticulation in Triticum, Wheat Inform. Serv., 1963, vol. 15/16, pp. 23–26.

    Google Scholar 

  121. 121.

    Ferrandiz, C., Liljiegren, S.J., and Yanofsky, M.F., Negative Regulation of the SHATTERPROOF Genes by FRUITFULL during Arabidopsis Fruit Development, Science, 2000, vol. 289, pp. 436–438.

    PubMed  CAS  Google Scholar 

  122. 122.

    Savidge, B., Rounsley, S.D., and Yanofsky, M.F., Temporal Relationship Between the Transcription of Two Arabidopsis MADS Box Genes and the Floral Organ Identity Genes, Plant Cell, 1995, vol. 7, pp. 721–733.

    PubMed  CAS  Google Scholar 

  123. 123.

    Roeder, A.H., Ferrandiz, C., and Yanofsky, M.F., The Role of the REPLUMLESS Homeodomain Protein in Patterning the Arabidopsis Fruit, Curr. Biol., 2003, vol. 13, pp. 1630–1635.

    PubMed  CAS  Google Scholar 

  124. 124.

    Mao, L., Begum, D., Chuang, H.-W., et al., JOINTLESS Is a MADS-Box Gene Controlling Tomato Flower Abscission Zone Development, Nature, 2000, vol. 406, pp. 910–913.

    PubMed  CAS  Google Scholar 

  125. 125.

    Nalam, V.J., Vales, M.I., Watson, C.J.W., Kianian, S.F., and Riera-Lizarazu, O., Map-Based Analysis of Genes Affecting Brittle Rachis Character in Tetraploid Wheat (Triticum turgidum, L.), Theor. Appl. Genet., 2006, vol. 112, pp. 373–381.

    PubMed  CAS  Google Scholar 

  126. 126.

    Nalam, V.J., Vales, M.I., Watson, C.J.W., Johnson, E.B., and Riera-Lizarazu, O., Map-Based Analysis of Genetic Loci on Chromosome 2D That Affect Glume Tenacity and Threshability Components of Freethreshing Nabit in Common Wheat (Triticum aestivum L.), Theor. Appl. Genet., vol. 116, pp. 35–145.

  127. 127.

    Takahashi, R. and Hayashi, J., Linkage Study of Two Complementary Genes for Brittle Rachis in Barley, Berichte des Ohara Institute fur Landwirtschaftliche Biologie, Okayama University, 1964, vol. 12, pp. 99–105.

    Google Scholar 

  128. 128.

    Kinoshi, S., Izawa, T., Lin, Sh.Y., et al., An SNP Caused Loss of Seed Shattering during Rice Domestication, Genet. Res. Crop Evol., 2006, vol. 53, pp. 985–992.

    Google Scholar 

  129. 129.

    Li, W. and Gill, B.S., Multiple Genetic Pathways for Seed Shattering in the Grasses, Funct. Integr. Genomics, 2006, vol. 6, pp. 300–309.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. O. Prokopyk.

Additional information

Original Ukrainian Text © D.O. Prokopyk, T.K. Ternovska, 2011, published in Tsitologiya i Genetika, 2011, Vol. 45, No. 1, pp. 52–67.

The article was translated by the authors.

About this article

Cite this article

Prokopyk, D.O., Ternovska, T.K. Homeotic genes and their role in development of morphological traits in wheat. Cytol. Genet. 45, 41–54 (2011). https://doi.org/10.3103/S0095452711010099

Download citation

Keywords

  • Common Wheat
  • Floral Organ
  • Hexaploid Wheat
  • Wheat Genome
  • Floral Meristem