Cytology and Genetics

, Volume 44, Issue 1, pp 52–60 | Cite as

Recent advances in plant biotechnology and genetic engineering for production of secondary metabolites



For a long time people are using plants not only as crop cultures but also for obtaining of various chemicals. Currently plants remain one of the most important and essential sources of biologically active compounds in spite of progress in chemical or microbial synthesis. In our review we compare potentials and perspectives of modern genetic engineering approaches for pharmaceutical biotechnology and give examples of actual biotechnological systems used for production of several promising natural compounds: artemisinin, paclitaxel and scopolamine.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Theis, N. and Lerdau, M., The Evolution of Function in Plant Secondary Metabolites, Int. J. Plant Sci., 2003, vol. 164, no. 3 (Suppl._, pp. S93–S102.CrossRefGoogle Scholar
  2. 2.
    Wink, M., Chemical Ecology of Alkaloids, in Alkaloids: Biochemistry, Ecology and Medicinal Applications, Roberts, M.F. and Wink, M., Eds., New York, London: Plenum press, 1998, pp. 265–300.Google Scholar
  3. 3.
    Wink, M. and Witte, L., Turnover and Transport of Quino-lizidine Alkaloids: Diurnal Variation of Lupanine in the Phloem Sap, Leaves and Fruits of Lupinus albus L., Planta, 1984, vol. 161, pp. 519–524.CrossRefGoogle Scholar
  4. 4.
    Arimura, G., Kost, C., and Boland, W., Herbivore-Induced, Indirect Plant Defences, Biochim. Biophys. Acta, 2005, vol. 1734, pp. 91–111.PubMedGoogle Scholar
  5. 5.
    Adams, M., Gmunder, F., and Hamburger, M., Plants Traditionally Used in Age Related Brain Disorders—a Survey of Ethnobotanical Literature, J. Ethnopharmacol., 2007, vol. 113, pp. 363–381.CrossRefPubMedGoogle Scholar
  6. 6.
    Eunice, A. and Fowler, M., Biologically Active Plant Secondary Metabolites—Perspectives for the Future, Chem. Industry, 1985, vol. 17, pp. 408–410.Google Scholar
  7. 7.
    Gurib-Fakim, A., Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow, Mol. Aspects. Med., 2006, vol. 27, pp. 1–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Itokawa, H., Morris-Natschke, S.L., Akiyama, T., and Lee, K.H., Plant-Derived Natural Product Research Aimed at New Drug Discovery, Nat. Med., 2008, vol. 62, pp. 263–280.CrossRefGoogle Scholar
  9. 9.
    Tempone, A.G., Sartorelli, P., Mady, C., and Fernandes, F., Natural Products to Anti-Trypanosomal Drugs: an Overview of New Drug Prototypes for American Trypanosomiasis, Cardiovasc. Hematol. Agents Med. Chem., 2007, vol. 5, pp. 222–235.CrossRefPubMedGoogle Scholar
  10. 10.
    Wink, M., A Short History of Alkaloids, in Alkaloids: Biochemistry, Ecology and Medicinal Applications, Roberts, M.F. and Wink, M., Eds., New York, London: Plenum press, 1998, pp. 11–44.Google Scholar
  11. 11.
    Boon, H. and Wong, J., Botanical Medicine and Cancer: a Review of the Safety and Efficacy, Exp. Opin. Pharmacother., 2004, vol. 5, pp. 2485–2501.CrossRefGoogle Scholar
  12. 12.
    Barnes, S. and Prasain, J., Current Progress in the Use of Traditional Medicines and Nutraceuticals, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 324–328.CrossRefPubMedGoogle Scholar
  13. 13.
    Hadacek, F., Secondary Metabolites as Plant Traits: Current Assessment and Future Perspectives, CRC Crit. Rev. Plant Sci., 2002, vol. 21, pp. 273–322.CrossRefGoogle Scholar
  14. 14.
    Zhang, W., Franco, C., Curtin, C., and Conn, S., To Stretch the Boundary of Secondary Metabolite Production in Plant Cell-Based Bioprocessing: Anthocyanin as a Case Study, J. Biomed. Biotechnol., 2004, vol. 5, pp. 264–271.CrossRefGoogle Scholar
  15. 15.
    Makkar, H.P., Siddhuraju, P., and Becker, K., Plant Secondary Metabolites, Meth. Mol. Biol., 2007, vol. 393, pp. 1–122.CrossRefGoogle Scholar
  16. 16.
    Zhong, J., Plant Cell Culture for the Production of Paclitaxel and Other Taxanes, J. Biosci. Bioeng., 2002, vol. 94, pp. 591–599.PubMedGoogle Scholar
  17. 17.
    Dvela, M., Rosen, H., Feldmann, T., Nesher, M., and Lichtstein, D., Diverse Biological Responses to Different Cardiotonic Steroids, Pathophysiology, 2007, vol. 14, pp. 159–166.CrossRefPubMedGoogle Scholar
  18. 18.
    De Clercq, E., Current Lead Natural Products for the Chemotherapy of Human Immunodeficiency Virus (HIV) Infection, Med. Res. Rev., 2000, vol. 20, pp. 323–349.CrossRefPubMedGoogle Scholar
  19. 19.
    Lin, L.D. and Wu, J.Y., Enhancement of Shikonin Production in Single- and Two-Phase Suspension Cultures of Lithospermum erythrorhizon Cells Using Low-Energy Ultrasound, Biotechnol. Bioeng., 2002, vol. 78, pp. 81–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Sirikantaramas, S., Asano, T., Sudo, H., Yamazaki, M., and Saito, K., Camptothecin: Therapeutic Potential and Biotechnology, Curr. Pharm. Biotechnol., 2007, vol. 8, pp. 196–202.CrossRefPubMedGoogle Scholar
  21. 21.
    Wu, S.F, Hsieh, P.W., Wu, C.C., Lee, C.L., Chen S.L., Lu, C.Y., Wu, T.S., Chang, F.R., and Wu, Y.C., Camptothecinoids from the Seeds of Taiwanese Nothapodytes Foetida, Molecules, 2008, vol. 13, pp. 1361–1371.CrossRefPubMedGoogle Scholar
  22. 22.
    Dhingra, V., Vishweshwar, Rao, K., Lakshmi Narasu, M., Current Status of Artemisinin and Its Derivatives as Antimalarial Drugs, Life Sci., 2000, vol. 66, pp. 279–300.CrossRefPubMedGoogle Scholar
  23. 23.
    Efferth, T., Molecular Pharmacology and Pharmacoge-nomics of Artemisinin and Its Derivatives in Cancer Cells, Curr. Drug Targets, 2006, vol. 7, pp. 407–421.CrossRefPubMedGoogle Scholar
  24. 24.
    Sirikantaramas, S., Taura, F., Morimoto, S., and Shoyama, Y., Recent Advances in Cannabis sativa Research: Biosyn-thetic Studies and Its Potential in Biotechnology, Curr. Pharm. Biotechnol., 2007, vol. 8, pp. 237–243.CrossRefPubMedGoogle Scholar
  25. 25.
    Taura, F., Sirikantaramas, S., Shoyama, Y., and Morimoto, S., Phytocannabinoids in Cannabis sativa: Recent Studies on Biosynthetic Enzymes, Chem. Biodivers, 2007, vol. 4, pp. 1649–1663.CrossRefPubMedGoogle Scholar
  26. 26.
    Taura, F., Dono, E., Sirikantaramas, S., Yoshimura, K., Shoyama, Y., and Morimoto, S., Production of Delta (1)-Tetrahydrocannabinolic Acid by the Biosynthetic Enzyme Secreted from Transgenic Pichia pastoris, Biochem. Biophys. Res. Communs., 2007, vol. 361, pp. 675–680.CrossRefGoogle Scholar
  27. 27.
    Davis, T.M., Karunajeewa, H.A., and Ilett, K.F., Artemisinin-Based Combination Therapies for Uncomplicated Malaria, Med. J. Aust., 2005, vol. 182, pp. 181–185.PubMedGoogle Scholar
  28. 28.
    Liu, C., Zhao, Y., and Wang, Y., Artemisinin: Current State and Perspectives for Biotechnological Production of an Antimalarial Drug, Appl. Microbiol. Biotechnol., 2006, vol. 72, pp. 11–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Schmid, G. and Hofheinz, W., Total Synthesis of Qinghaosu, J. Am. Chem. Soc., 1983, vol. 105, pp. 624–625.CrossRefGoogle Scholar
  30. 30.
    Qian, Z., Gong, K., Zhang, L., Lv, J., Jing, F., Wang, Y., Guan, S., Wang, G., and Tang, K., A Simple and Efficient Procedure to Enhance Artemisinin Content in Artemisia annua L. by Seeding to Salinity Stress, Afr. J. Biotechnol., 2007, vol. 6, pp. 1410–1413.Google Scholar
  31. 31.
    Baldi, A. and Dixit, V.K., Yield Enhancement Strategies for Artemisinin Production by Suspension Cultures of Artemisia annua, Biores. Technol., 2008, vol. 99, pp. 4609–4614.CrossRefGoogle Scholar
  32. 32.
    Souret, F.F., Kim, Y., Wyslouzil, B.E., Wobbe, K.K., and Weathers, P.J., Scale-up of Artemisia annua L. Hairy Root Cultures Produces Complex Patterns of Terpenoid Gene Expression, Biotechnol. Bioeng., 2003, vol. 83, pp. 653–667.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu, Y., Wang, H., Ye, H.-C., and Li, G.-F., Advances in the Plant Isoprenoid Biosynthesis Pathway and Its Metabolic Engineering, J. Integr. Plant Biol., 2005, vol. 47, pp. 769–782.CrossRefGoogle Scholar
  34. 34.
    Wu, S., Schalk, M., Clark, A., Miles, R.B., Coates, R., and Chappell, J., Redirection of Cytosolic or Plastidic Isoprenoid Precursors Elevates Terpene Production in Plants, Nat. Biotechnol., 2006, vol. 24, pp. 1441–1447.CrossRefPubMedGoogle Scholar
  35. 35.
    Ro, D.K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C., Withers, S.T., Shiba, Y., Sarpong, R., and Keasling, J.D., Production of the Antimalarial Drug Precursor Artemisinic Acid in Engineered Yeast, Nature, 2006, vol. 440, pp. 940–943.CrossRefPubMedGoogle Scholar
  36. 36.
    Zeng, Q., Qiu, F., and Yuan, L., Production of Artemisinin by Genetically-Modified Microbes, Biotechnol. Lett., 2008, vol. 30, pp. 581–592.CrossRefPubMedGoogle Scholar
  37. 37.
    Lenihan, J.R., Tsuruta, H., Diola, D., Renninger, N.S., and Regentin, R., Developing an Industrial Artemisinic Acid Fermentation Process to Support the Cost-Effective Production of Antimalarial Artemisinin-Based Combination Therapies, Biotechnol. Prog., 2008, vol. 24, pp. 1026–1032.CrossRefPubMedGoogle Scholar
  38. 38.
    Wani, M.C., Taylor, H.L., Wall, M.E., Coggon, P., and McPhail, A.T., Plant Antitumor Agents: The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus Brevifolia, J. Am. Chem. Soc., 1971, vol. 93, pp. 2325–2327.CrossRefPubMedGoogle Scholar
  39. 39.
    Misawa, M. and Goodbody, A.E., Production of Antitumor Compounds by Plant Cell Cultures, in Plant Cell Culture Secondary Metabolism: Toward Industrial Application, DiCosmo, F. and Misawa, M., Eds., New York, Boca Raton: CRC Press LLC, 1996, pp. 123–138.Google Scholar
  40. 40.
    Srivastava, V., Negi, A.S., Kumar, J.K., Gupta, M.M., and Khanuja, S.P., Plant-Based Anticancer Molecules: a Chemical and Biological Profile of Some Important Leads, Bioorg. Med. Chem., 2005, vol. 13, pp. 5892–5908.CrossRefPubMedGoogle Scholar
  41. 41.
    Baloglu, E. and Kingston, D.G., The Taxane Diterpenoids, J. Nat. Prod., 1999, vol. 62, pp. 1448–1472.CrossRefPubMedGoogle Scholar
  42. 42.
    Guenard, D., Gueritte-Voegelein, F., Dubois, J., and Potter, P., Structure-Activity Relationships of Taxol and Taxotere Analogues, J. Natl. Cancer Inst. Monogr., 1993, vol. 15, pp. 79–82.PubMedGoogle Scholar
  43. 43.
    Frense, D., Taxanes: Perspectives for Biotechnological Production, Appl. Microbiol. Biotechnol., 2007, vol. 73, pp. 1233–1240.CrossRefPubMedGoogle Scholar
  44. 44.
    Vongpaseuth, K. and Roberts, S.C., Advancements in the Understanding of Paclitaxel Metabolism in Tissue Culture, Curr. Pharm. Biotechnol., 2007, vol. 8, pp. 219–236.CrossRefPubMedGoogle Scholar
  45. 45.
    Jha, S., Sanyal, D., Ghosh, B., and Jha, T.B., Improved Taxol Yield in Cell Suspension Culture of Taxus Wallichiana (Himalayan Yew), Planta Med., 1998, vol. 64, pp. 270–272.CrossRefPubMedGoogle Scholar
  46. 46.
    Parc, G., Canaguier, A., Landre, P., Hocquemiller, R., Chriqui, D., and Meyer, M., Production of Taxoids with Biological Activity by Plants and Callus Culture from Selected Taxus Genotypes, Phytochemistry, 2002, vol. 59, pp. 725–730.CrossRefPubMedGoogle Scholar
  47. 47.
    Dong, H.D. and Zhong, J.J., Significant Improvement of Taxane Production in Suspension Cultures of Taxus chinen-sis by Combining Elicitation with Sucrose Feed, Biochem. Eng. J., 2001, vol. 8, pp. 145–150.CrossRefGoogle Scholar
  48. 48.
    Laskaris, G., Boutandhay, M., Theodoridis, G., van der Heijden, R., Verpoorte, R., and Jaziri, M., Induction of Ger-anylgeranyl Diphosphate Synthase Activity and Taxane Accumulation in Tcucus baccatu Cell Cultures after Elicitation by Methyl Jasmonate, Plant Sci., 1999, vol. 147, pp. 1–8.CrossRefGoogle Scholar
  49. 49.
    Tabata, H., Production of Paclitaxel and the Related Taxanes by Cell Suspension Cultures of Taxus Species, Curr. Drug Targets, 2006, vol. 7, pp. 453–461.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang, Z.Y. and Zhong, J.J., Repeated Elicitation Cnhances Taxane Production in Suspension Cultures of Tavus chi-nensis in Bioreactors, Biotechnol. Lett., 2002, vol. 24, pp. 445–448.CrossRefGoogle Scholar
  51. 51.
    Roberts, S.C., Production and Engineering of Terpenoids in Plant Cell Culture, Nat. Chem. Biol., 2007, vol. 3, pp. 387–395.CrossRefPubMedGoogle Scholar
  52. 52.
    Hemmerlin, A., Hoeffler, J.F., Meyer, O., Tritsch, D., Kagan, I.A., Grosdemange-Billiard, C., Rohmer, M., and Bach, T.J., Cross-Talk between the Cytosolic Mevalonate and the Plastidial Methylerythritol Phosphate Pathways in Tobacco Bright Yellow-2 Cells, J. Biol. Chem., 2003, vol. 278, pp. 26666–26676.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang, Y.D., Yuan, Y.J., Lu, M., Wu, J.C., and Jiang, J.L., Inhibitor Studies of Isopentenyl Pyrophosphate Biosynthesis in Suspension Cultures of the Yew Taxus Chinensis var. Mairei, Biotechnol. Appl. Biochem., 2003, vol. 37, pp. 39–43.CrossRefPubMedGoogle Scholar
  54. 54.
    Dejong, J.M., Liu, Y., Bollon, A.P., Long, R.M., Jennewein, S., Williams, D., and Croteau, R.B., Genetic Engineering of Taxol Biosynthetic Genes in Saccharomyces cerevisiae, Biotechnol. Bioeng., 2006, vol. 93, pp. 212–224.CrossRefPubMedGoogle Scholar
  55. 55.
    Julsing, M.K., Koulman, A., Woerdenbag, H.J., Quax, W.J., and Kayser, O., Combinatorial Biosynthesis of Medicinal Plant Secondary Metabolites, Biomol. Eng., 2006, vol. 23, pp. 265–279.CrossRefPubMedGoogle Scholar
  56. 56.
    Jin, H., Gong, Y., Guo, B., Qiu, C., Liu, D., Miao, Z., Sun, X., and Tang, K., Isolation and Characterization of a 2C-Methyl-D-Erythritol2,4-Cyclodiphosphate Synthase Gene from Taxus Media, Mol. Biol. (Mosk), 2006, vol. 40, pp. 1013–1020.CrossRefGoogle Scholar
  57. 57.
    Ketchum, R.E., Wherland, L., and Croteau, R.B., Stable Transformation and Long-Term Maintenance of Transgenic Taxus Cell Suspension Cultures, Plant Cell Rep., 2007, vol. 26, pp. 1025–1033.CrossRefPubMedGoogle Scholar
  58. 58.
    Huang, Q., Roessner, C.A., Croteau, R., and Scott, A.I., Engineering Escherischia coli for the Synthesis of Taxadiene, a Key Intermediate in the Biosynthesis of Taxol, Bioorg. Med. Chem., 2001, vol. 9, pp. 2237–2242.CrossRefPubMedGoogle Scholar
  59. 59.
    Jennewein, S., Park, H., DeJong, J.M., Long, R.M., Bol-lon, A.P., and Croteau, R.B., Coexpression in Yeast of Taxus Cytochrome P450 Reductase with Cytochrome P450 Oxygenases Involved in Taxol Biosynthesis, Biotechnol. Bioeng., 2005, vol. 89, pp. 588–598.CrossRefPubMedGoogle Scholar
  60. 60.
    Besumbes, O., Sauret-Gueto, S., Phillips, M.A., Imperial, S., Rodriguez-Concepcion, M., and Boronat, A., Metabolic Engineering of Isoprenoid Biosynthesis in Arabidopsis for the Production of Taxadiene, the First Committed Precursor of Taxol, Biotechnol. Bioeng., 2004, vol. 88, pp. 168–175.CrossRefPubMedGoogle Scholar
  61. 61.
    Kovacs, K., Zhang, L., Linforth, R.S., Whittaker, B., Hayes, C.J., and Fray, R.G., Redirection of Carotenoid Metabolism for the Efficient Production of Taxadiene [taxa-4(5),11(12)-Diene] in Transgenic Tomato Fruit, Transgenic Res., 2007, vol. 16, pp. 121–126.CrossRefPubMedGoogle Scholar
  62. 62.
    Anterola, A., Shanle, E., Perroud, P.F., and Quatrano, R., Production of Taxa-4(5),11(12)-Diene by Transgenic Physcomitrella patens, Transgenic Res., 2009, vol. 18, pp. 655–660.CrossRefPubMedGoogle Scholar
  63. 63.
    Engels, B., Dahm, P., and Jennewein, S., Metabolic Engineering of Taxadiene Biosynthesis in Yeast as a First Step Towards Taxol (Paclitaxel) Production, Metab. Eng., 2008, vol. 10, pp. 201–206.CrossRefPubMedGoogle Scholar
  64. 64.
    Griffin, W.J. and Lin, G.D., Chemotaxonomy and Geographical Distribution of Tropane Alkaloids, Phytochemistry, 2000, vol. 53, pp. 623–637.CrossRefPubMedGoogle Scholar
  65. 65.
    Palazon, J., Navarro-Ocana, A., Hernandez-Vazquez, L., and Mirjalili, M.H., Application of Metabolic Engineering to the Production of Scopolamine, Molecules, 2008, vol. 13, pp. 1722–1742.CrossRefPubMedGoogle Scholar
  66. 66.
    Jouhikainen, K., Lindgren, L., Jokelainen, T., Hiltunen, R., Teeri, T.H., and Oksman-Caldentey, K.-M., Enhancement of Scopolamine Production in Hyoscyamus muticus L. Hairy Root Cultures by Genetic Engineering, Planta, 1999, vol. 208, pp. 545–551.CrossRefGoogle Scholar
  67. 67.
    Oksman-Caldentey, K.M. and Strauss, A., Somaclonal Variation of Scopolamine Content in ProtoplastDerived Cell Culture Clones of Hyoscyamus muticus, Planta Med., 1986, vol. 52, pp. 6–12.CrossRefGoogle Scholar
  68. 68.
    Mishra, B.N. and Ranjan, R., Growth of Hairy-Root Cultures in Various Bioreactors for the Production of Secondary Metabolites, Biotechnol. Appl. Biochem., 2008, vol. 49, pp. 1–10.CrossRefPubMedGoogle Scholar
  69. 69.
    Bulgakov, V.P., Functions of Rol Genes in Plant Secondary Metabolism, Biotechnol. Adv., 2008, vol. 26, pp. 318–324.CrossRefPubMedGoogle Scholar
  70. 70.
    Srivastava, S. and Srivastava, A.K., Hairy Root Culture for Mass-Production of High-Value Secondary Metabolites, Crit. Rev. Biotechnol., 2007, vol. 27, pp. 29–43.CrossRefPubMedGoogle Scholar
  71. 71.
    Sevon, N. and Oksman-Caldentey, K.M., Agrobacterium Rhizo-genes-Mediated Transformation: Root Cultures as a Source of Alkaloids, Planta Med., 2002, vol. 68, pp. 859–868.CrossRefPubMedGoogle Scholar
  72. 72.
    Sevon, N., Hiltunen, R., and Oksman-Caldentey, K,M., Somaclonal Variation in Transformed Roots and Protoplast-Derived Hairy Root Clones of Hyoscyamus Muticus, Planta Med., 1998, vol. 64, pp. 37–41.CrossRefPubMedGoogle Scholar
  73. 73.
    Oksman-Caldentey, K.M., Tropane and Nicotine Alkaloid Biosynthesis-Novel Approaches Towards Biotechnologi-cal Production of Plant-Derived Pharmaceuticals, Curr. Pharm. Biotechnol., 2007, vol. 8, pp. 203–210.CrossRefPubMedGoogle Scholar
  74. 74.
    Moyano, E., Fornale, S., Palazon, J., Cusido, R.M., Bagni, N., and Pinol, M.T., Alkaloid Production in Duboisia Hybrid Hairy Root Cultures Overexpressing the pmt Gene, Phytochemistry, 2002, vol. 59, pp. 697–702.CrossRefPubMedGoogle Scholar
  75. 75.
    Sato, F., Hashimoto, T., Hachiya, A., Tamura, K., Choi, K.B., Morishige, T., Fujimoto, H., and Yamada, Y., Metabolic Engineering of Plant Alkaloid Biosynthe sis, Proc. Nat. Acad. Sci. USA, 2001, vol. 98, pp. 367–372.CrossRefPubMedGoogle Scholar
  76. 76.
    Rothe, G., Hachiya, A., Yamada, Y., Hashimoto, T., and Drager, B., Alkaloids in Plants and Root Cultures of Atropa elladonna Overexpressing Putrescine N-Methyltrans-ferase, J. Exp. Bot., 2003, vol. 54, pp. 2065–2070.CrossRefPubMedGoogle Scholar
  77. 77.
    Moyano, E., Jouhikainen, K., Tammela, P., Palazon, J., Cusido, R.M., Pinol, M.T., Teeri, T.H., and Oksman-Caldentey, K.M., Effect of pmt Gene Overexpression on Tropane Alkaloid Production in Transformed Root Cultures of Datura metel and Hyoscyamus muticus, J. Exp. Bot., 2003, vol. 54, pp. 203–211.CrossRefPubMedGoogle Scholar
  78. 78.
    Hashimoto, T., Matsuda, J., and Yamada, Y., Two-Step Epoxi-dation of Hyoscyamine to Scopolamine is Catalyzed by Bifunctional Hyoscyamine 6 beta-Hydroxylase, FEBS Lett., 1993, vol. 329, pp. 35–39.CrossRefPubMedGoogle Scholar
  79. 79.
    Hashimoto, T. and Yamada, Y., Hyoscyamine 6beta-Hydrox-ylase, a 2-Oxoglutarate-Dependent Dioxygenase, in Alkaloid-Producing Root Cultures, Plant. Physiol., 1986, vol. 81, pp. 619–625.CrossRefPubMedGoogle Scholar
  80. 80.
    Matsuda, J., Okabe, S., Hashimoto, T., and Yamada, Y., Molecular Cloning of Hyoscyamine 6 beta-Hydroxylase, a 2-Oxoglutarate-Dependent Dioxygenase, from Cultured Roots of Hyoscyamus niger, J. Biol. Chem., 1991, vol. 266, pp. 9460–9464.PubMedGoogle Scholar
  81. 81.
    El Jaber-Vazdekis, N., Gonzalez, C., Ravelo, A.G., and Zarate, R., Cloning, Characterization and Analysis of Expression Profiles of a cDNA Encoding a Hyoscyamine 6beta-Hydroxylase (H6H) from Atropa baetica Willk, Plant Physiol. Biochem., 2009, vol. 47, pp. 20–25.CrossRefPubMedGoogle Scholar
  82. 82.
    Suzuki, K., Yun, D.J., Chen, X.Y., Yamada, Y., and Hashimoto, T., An Atropa belladonna Hyoscyamine 6beta-Hydroxylase Gene is Differentially Expressed in the Root Pericy-cle and Anthers, Plant Mol. Biol., 1999, vol. 40, pp. 141–152.CrossRefPubMedGoogle Scholar
  83. 83.
    Kai, G., Chen, J., Li, L., Zhou, G., Zhou, L., Zhang, L., Chen, Y., and Zhao, L., Molecular Cloning and Characterization of a New cDNA Encoding Hyoscyamine 6beta-Hydroxylase from Roots of Anisodus acutangulus, J. Biochem. Mol. Biol., 2007, vol. 40, pp. 715–722.PubMedGoogle Scholar
  84. 84.
    Nakajima, K., Hashimoto, T., and Yamada, Y., cDNA Encoding Tropinone Reductase-II from Hyoscyamus niger, Plant Physiol., 1993, vol. 103, pp. 1465–1466.CrossRefPubMedGoogle Scholar
  85. 85.
    Hashimoto, T., Yun, D.-J., and Yamada, Y., Production of Tropane Alkaloids in Genetically Engineered Root Cultures, Phytochemistry, 1993, vol. 32, pp. 713–718.CrossRefGoogle Scholar
  86. 86.
    Jun, D.J., Hashimoto, T., and Yamada, Y., Metabolic Engineering of Medicinal Plants: Transgenic Atropa belladonna with an Improved Alkaloid Composition, Proc. Nat. Acad. Sci. USA, 1992, vol. 89, pp. 11799–11803.CrossRefGoogle Scholar
  87. 87.
    Zhang, L., Ding, R., Chai, Y., Bonfill, M., Moyano, E., Oksman-Caldentey, K.M., Xu, T., Pi, Y., Wang, Z., Zhang, H., Kai, G., Liao, Z., Sun, X., and Tang, K., Engineering Tropane Biosynthetic Pathway in Hyoscyamus niger Hairy Root Cultures, Proc. Nat. Acad. Sci. USA, 2004, vol. 101, pp. 6786–6791.CrossRefPubMedGoogle Scholar
  88. 88.
    Hakkinen, S.T., Moyano, E., Cusido, R.M., Palazon, J., Pinol, M.T., and Oksman-Caldentey, K.M., Enhanced Secretion of Tropane Alkaloids in Nicotiana tabacum Hairy Roots Expressing Heterologous Hyoscyamine-6beta-Hydroxylase, J. Exp. Bot., 2005, vol. 56, pp. 2611–2618.CrossRefPubMedGoogle Scholar
  89. 89.
    Moyano, E., Palazon, J., Bonfill, M., Osuna, L., Cusido, R.M., Oksman-Caldentey, K.M., and Pinol, M.T., Biotransformation of Hyoscyamine into Scopolamine in Transgenic Tobacco Cell Cultures, J. Plant Physiol., 2007, vol. 164, pp. 521–452.CrossRefPubMedGoogle Scholar
  90. 90.
    Cardillo, A.B., Talou, J.R., and Giulietti, A.M., Expression of Brugmansia candida Hyoscyamine 6beta-Hydroxylase Gene in Saccharomyces cerevisiae and Its Potential Use as Biocatalyst, Microb. Cell Fact., 2008, vol. 7, p. 17.CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  1. 1.Institute of Cell Biology and Genetic EngineeringKievUkraine

Personalised recommendations