Skip to main content

Origins of native vascular plants of antarctica: Comments from a historical phytogeography viewpoint

Abstract

The article provides an overview of the problem of the origin of the only native vascular plants of Antarctica, Deschampsia antarctica (Poaceae) and Colobanthus quitensis (Caryophyllaceae), from the viewpoint of modem historical phytogeography and related fields of science. Some authors suggest the Tertiary relict status of these plants in Antarctica, while others favor their recent Holocene immigration. Direct data (fossil or molecular genetic data) for solving this controversy are still lacking. However, there is no convincing evidence supporting the Tertiary relict status of these plants in Antarctica. Most probably, D. antarctica and C. quitensis migrated to Antarctica in the Holocene or Late Pleistocene (last interglacial?) through bird-aided long-distance dispersal. It should be critically tested by (1) appropriate methods of molecular phylogeography; (2) molecular clock methods, if feasible; (3) direct paleobotanical studies; (4) paleoclimatic reconstructions; and (5) comparison with cases of taxa with similar distribution/dispersal patterns. The problem of the origin of Antarctic vascular plants is a perfect model for integration of modern methods of molecular phylogeography and phylogenetics, population biology, paleobiology, and paleogeography for solving a long-standing enigma of historical plant geography and evolution.

This is a preview of subscription content, access via your institution.

References

  1. Parnikoza, I.Yu., Maidanuk, D.N., and Kozeretska, I.A., Are Deschampsia antartica Desv. and Cohbanthus quitensis (Kunth) Bartl. Migratory Relicts?, Cyt. Gen., 2007, vol. 41, no. 4, pp. 36–40.

    Google Scholar 

  2. Baldwin, E.G., Crawford, D.J., Francisco-Ortega, J., et al., Molecular Phylogenetic Insights on the Origin and Evolution of Oceanic Island Plants, Molecular Systematics of Plants: II. DNA Sequencing, Soltis, D.E., Soltis, P., and Doyle, J.J., Eds., New York: Kluwer Acad. Publ., 1998, pp. 410–441.

    Google Scholar 

  3. Crisci, J.V., The Voice of Historical Biogeography, J. Biogeogr., 2001, vol. 28, pp. 157–168.

    Article  Google Scholar 

  4. Hewitt, G.M., The Structure of Biodiversity—Insights from Molecular Phylogeography, Frontiers in Zoology, 2004, vol. 1, no. 4, http://www.frontiersinzoologv.com/contgnt/1/1/4.

  5. Mosyakin, S.L., Chornomor. Bot. Zh., 2005, vol. 1, no. 1, pp. 7–18.

    Google Scholar 

  6. Mosyakin, S.L., Bezusko, L.G., and Mosyakin, A.S., Ukr. Bot. Zh., 2005, vol. 62, no. 6, pp. 777–789.

    Google Scholar 

  7. Mosyakin, S.L., Mosyakin, A.S., and Bezusko, L.G., Ukr. Bot. Zh., 2005, vol. 62, no. 5, pp. 624–631.

    Google Scholar 

  8. Stewart, J.R. and Lister, A.M., Cryptic Northern refugia and the Origins of the Modern Biota, Trends Ecol. Evol., 2001, vol. 16, pp. 608–613.

    Article  Google Scholar 

  9. Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G., and Cosson, J.-F., Comparative Phylogeography and Postglacial Colonization Routes in Europe, Mol. Ecol., 1998, vol. 7, pp. 453–464.

    PubMed  Article  CAS  Google Scholar 

  10. Bremer, K., Gondwanan Evolution of the Grass Alliance of Families (Poales), Evolution, 2002, vol. 56, pp. 1374–1387.

    PubMed  CAS  Google Scholar 

  11. Davis, C.C., Bell, C.D., Mathews, S., and Donoghue, M.J., Laurasian Migration Explains Gondwanan Disjunctions: Evidence from Malpighiaceae, Proc. Nat. Acad. Sci. USA, 2002, vol. 99, no. 10, pp. 6833–6837.

    PubMed  Article  CAS  Google Scholar 

  12. Eskov, K.Yu., Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Rearrangements and the Evolution of the Biosphere), Moscow: Nedra, 1994, pp. 199–205.

    Google Scholar 

  13. Eskov, K.Yu., Istoriya Zemli i zhizni na nei (The History of Earth and Life on It), Moscow: Nauka/Interperiodica, 2000.

    Google Scholar 

  14. Givnish, T.J. and Renner, S.S., Tropical Intercontinental Disjunctions: Gondwana Breakup, Immigration from the Boreotropics, and Transoceanic Dispersal, Int. J. Plant Sci., 2004, vol. 165,Suppl. 4, pp. S1–S6.

    Article  Google Scholar 

  15. Cain, M.L., Milligan, B.G., and Strand, A.E., Long-Distance Dispersal in Plant Populations, Amer. J. Bot., 2000, vol. 87, pp. 1217–1227.

    Article  Google Scholar 

  16. Carlquist, Sh., The Biota of Long-Distance Dispersal: IV. Plant Dispersal to Pacific Islands, Bull. Torrey Bot. Club., 1967, vol. 94, pp. 129–162.

    Article  Google Scholar 

  17. Emerson, B.C., Evolution on Oceanic Islands: Molecular Phylogenetic Approaches to Understanding Pattern and Process, Mol. Ecol., 2002, vol. 11, pp. 951–966.

    PubMed  Article  CAS  Google Scholar 

  18. Francisco-Ortega, J., Jansen, R.K., and Santos-Guerra, A., Chloroplast DNA Evidence of Colonization, Adaptive Radiation, and Hybridization in the Evolution of the Macronesian Flora, Proc. Nat. Acad. Sci. USA, 1996, vol. 93, pp. 4085–4090.

    PubMed  Article  CAS  Google Scholar 

  19. Juan, C., Emerson, B.C., Orom, P., and Hewitt, G.M., Colonization and Diversification: Towards a Phylogeographic Synthesis for the Canary Islands, Trends Ecol. Evol., 2000, vol. 15, pp. 104–109.

    PubMed  Article  Google Scholar 

  20. Winkworth, R.C., Wagstaff, S.J., Glenny, D., and Lockhart, P.J., Plant Dispersal N.E.W.S. from New Zealand, Trends Ecol. Evol., 2002, vol. 17, pp. 514–520.

    Article  Google Scholar 

  21. Ballard, H.E. and Sytsma, K.J., Evolution and Biogeography of the Woody Hawaiian Violets (Viola, Violaceae): Arctic Origins, Herbaceous Ancestry and Bird Dispersal, Evolution, 2000, vol. 54, pp. 1521–1532.

    PubMed  Article  Google Scholar 

  22. Fleischner, R.C., McIntosh, C.E., and Tarr, C.L., Evolution on a Volcanic Conveyor Belt: Using Phylogeographic Reconstructions and K-Ar-based ages of the Hawaiian Islands to Estimate Molecular Evolutionary Rates, Mol. Ecol., 1998, vol. 7, pp. 533–545.

    Article  Google Scholar 

  23. Kim, H.-G., Keeley, S.C., Vroom, P.S., Jansen, R.K., Molecular Evidence for an African Origin of the Hawaiian Endemic Hesperomannia (Asteraceae), Proc. Nat. Acad. Sci. USA, 1998, vol. 95, pp. 15440–15445.

    PubMed  Article  CAS  Google Scholar 

  24. Lindqvist, Ch. and Albert, V.A., Origin of the Hawaiian Endemic Mints within North American Stachys (Lamiaceae), Amer. J. Bot., 2002, vol. 89, pp. 1709–1724.

    Google Scholar 

  25. Price, J.P. and Clague, D.A., How Old is the Hawaiian Biota? Geology and Phylogeny Suggest Recent Divergence, Proc. Royal Soc. London. Ser. B, Biol. Sci., 2002, vol. 269, pp. 2429–2435.

    Article  Google Scholar 

  26. Linder, H.P. and Crisp, M.D., Nothofagus and Pacific Biogeography, Cladistics., 1995, vol. 11, pp. 5–32.

    Article  Google Scholar 

  27. Manos, P.S., Systematics of Nothofagus (Nothofagaceae) Based on rDNA Spacer Sequences (ITS): Taxonomic Congruence with Morphology and Plastid Sequences, Amer. J. Bot., 1997, vol. 84, pp. 1137–1155.

    Article  CAS  Google Scholar 

  28. Knapp, M., Stuckler, K., Havell, D., et al., Relaxed Molecular Clock Provides Evidence for Long-Distance Dispersal of Nothofagus (Southern Beech), PLoS Biology, 2005, vol. 3, no. 1, e14, pp. 0038–0043.

    Article  CAS  Google Scholar 

  29. Sanmartín, I. and Ronquist, L., Southern Hemisphere Biogeography Inferred by Event-Based Models: Plant Versus Animal Patterns, Syst. Biol., 2004, vol. 53, no. 2, pp. 216–243.

    PubMed  Article  Google Scholar 

  30. Takhtadzhyan, A.L., Floristicheskie oblasti Zemli (Floristic Regions of the Earth), Leningrad: Nauka, 1978.

    Google Scholar 

  31. Cox, C.B., The Biogeographic Regions Reconsidered, J. Biogeogr., 2001, vol. 28, pp. 511–523.

    Article  Google Scholar 

  32. Ashworth, A.C. and Cantrill, D.J., Neogene Vegetation of the Meyer Desert Formation (Sinus Group) Transantarctic Mountains, Antarctica, Paleogeography, Paleoclimatology, Paleoecology, 2004, vol. 213, pp. 65–82.

    Article  Google Scholar 

  33. Dettmann, M.E., Antarctica: Cretaceous Cradle of Austral Temperate Rainforests?, Origins and Evolution of the Antarctic Biota, Crame, J.A., Ed., Geol. Soc. Special Publ. No. 47, London: Geol. Soc., 1989, pp. 89–105.

    Google Scholar 

  34. Truswell, E.M., Cretaceous and Tertiary Vegetation of Antarctica: A Palynological Perspective, Antarctic Paleobiology: Its Role in the Reconstruction of Gondwana, Taylor, T.N. and Taylor, E.L., Eds., New York: Springer-Verlag, 1990, pp. 71–88.

    Google Scholar 

  35. Jordan, G.J. and Macphail, M.K., A Middle-Late Eocene Inflorescence of Caryophyllaceae from Tasmania, Australia, Amer. J. Bot., 2003, vol. 90, no. 5, pp. 761–768.

    Google Scholar 

  36. Abbot, R.J. and Brochmann, C., History and Evolution of the Arctic Flora: In the Footsteps of Eric Hultén, Mol. Ecol., 2003, vol. 12, pp. 299–313.

    Article  Google Scholar 

  37. Brochmann, C., Gabrielsen, T.M., Nordal, I., et al., Glacial Survival or Tabula rasa? The History of North Atlantic Biota Revisited, Taxon., 2003, vol. 52, pp. 417–450.

    Article  Google Scholar 

  38. Comes, H.P. and Kadereit, J.W., The Effect of Quaternary Climatic Changes on Plant Distribution and Evolution, Trends Plant Sci., 1998, vol. 3, pp. 432–438.

    Article  Google Scholar 

  39. Rundgren, M. and Ingylfsson, V., Plant Survival in Iceland during Period of Glaciation?, J. Biogeogr., 2003, vol. 26, no. 2, pp. 387–396.

    Article  Google Scholar 

  40. Stehlik, I., Resistance or Immigration? Response of Alpine Plants to Ice Ages, Taxon., 2003, vol. 52, pp. 499–510.

    Article  Google Scholar 

  41. Udra, I.F., Rasselenie rastenii i voprosy paleo-i biogeografii (Plant Dispersal and Problems of Paleo-and Biogeography), Kiev: Naukova Dumka, 1988.

    Google Scholar 

  42. Vargas, P., Molecular Evidence for Multiple Diversification Patterns of Alpine Plants in Mediterranean Europe, Taxon., 2003, vol. 52, pp. 463–476.

    Article  Google Scholar 

  43. Janssen, T. and Bremer, K., The Age of Major Monocot Groups Inferred from 800+ rbcL Sequences, Bot. J. Linn. Soc., 2004, vol. 146, pp. 385–398.

    Article  Google Scholar 

  44. Wikstrum, N., Savolainen, V., and Chase, M.W., Evolution of the Angiosperms: Calibrating the Family Tree, Proc. Royal Soc. London. Ser. B, Biol. Sci., 2001, vol. 268, pp. 2211–2220.

    Article  Google Scholar 

  45. Gradstein F.M., Ogg J.G., Smith A.G, et al. A Geologic Time Scale 2004. Cambridge: Cambridge Univ. Press, 2004.

    Google Scholar 

  46. Holderegger, R., Stehlik, I., Lewis Smith, R.I., and Abbott, R.J., Populations of Antarctic Hairgrass (Deschampsia antarctica) Show Low Genetic Diversity, Arctic, Antarctic, and Alpine Res., 2003, vol. 35, no. 2, pp. 214–217.

    Article  Google Scholar 

  47. Simyn, L.E., Notas sobre Chenopodium L. subgen. Ambrosia A. J. Scott (Chenopodiaceae): I. Taxonomí. II. Fitogeografí: Áreas disjuntas, Anales. Jard. Bot. Madrid, 1996, vol. 54, pp. 137–148.

    Google Scholar 

  48. Mosyakin, S.L., Rumex Linnaeus (Polygonaceae), Flora of North America North of Mexico, FNA Editorial Committee, Ed., New York and Oxford: Oxford Univ. Press, 2005, vol. 5. Magnoliophyta: Caryophyllidae, part 2, pp. 489–533.

    Google Scholar 

  49. Rechinger, K.H., Rumex subgen. Rumex sect. Axillares (Polygonaceae) in South America, Pl. Syst. Evol., 1990, vol. 172, pp. 151–192.

    Article  Google Scholar 

  50. Chwedorzewska, K.J., Preliminary Genetic Study on Species from Genus Deschampsia from Antarctic (King George I.) and Arctic (Spitsbergen), Polar Biosci., 2006, vol. 19, pp. 142–147.

    CAS  Google Scholar 

  51. Gianoli, E., Inostroza, P., Zúñiga-Feest, A., et al., Ecotypic Differentiation in Morphology and Cold Resistance in Populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of Central Chile and the Maritime Antarctic, Arctic, Antarctic, and Alpine Res., 2004, vol. 36, no. 4, pp. 484–489.

    Article  Google Scholar 

  52. Fernández Souto, D.P., Catalano, S.A., Tosto, D., et al., Phylogenetic Relationships of Deschampsia antarctica (Poaceae): Insights from Nuclear Ribosomal ITS, Pl. Syst. Evol., 2006, vol. 261, no. 1/4, pp. 1–9.

    Article  CAS  Google Scholar 

  53. Barnes, D.K.A., Hodgson, D.A., Convey, P., et al., Incursion and Excursion of Antarctic Biota: Past, Present, and Future, Global Ecology and Biogeography (Global Ecol. Biogeogr.), 2006, vol. 15, pp. 121–142.

    Article  Google Scholar 

  54. Hall, K., Review of Present and Quaternary Periglacial Processes and Landforms of the Maritime and sub-Antarctic Region, South African J. Sci., 2002, vol. 98, pp. 71–81.

    Google Scholar 

  55. Ingylfsson, Y., Hjort, C., Berkman, P.A., et al., Antarctic Glacial History Since the Last Glacial Maximum: An Overview of the Record on Land, Antarctic Sci., 1998, vol. 10, pp. 326–344.

    Google Scholar 

  56. Masson, V., Vimeux, F., Jouzel, J., et al., Holocene Climate Variability in Antarctica Based on 11 Ice-Core Isotopic Records, Quaternary Res., 2000, vol. 54, pp. 348–358.

    Article  CAS  Google Scholar 

  57. Robinson, S.A., Wasley, J., and Tobin, A.K., Living on the Edge—Plants and Global Change in Continental and Maritime Antarctica, Global Change Biol., 2003, vol. 9, pp. 1681–1717.

    Article  Google Scholar 

  58. Rosqvist, G.C., Rietti-Shati, M., and Shemesh, A., Late Glacial to Middle Holocene Climatic Record of Lacustrine Biogenic Silica Oxygen Isotopes from a Southern Ocean Island, Geology., 1999, vol. 27, no. 11, pp. 967–970.

    Article  CAS  Google Scholar 

  59. Berkman, P.A., Andrews, J.T., Bjurk, S., et al., Circum-Antarctic Coastal Environmental Shifts during the Late Quaternary Reflected by Emerged Marine Deposits, Antarctic Sci., 1998, vol. 10, no. 3, pp. 345–362.

    Google Scholar 

  60. Tarasov, P.E., Volkova, V.S., Webb III, T., et al., Last Glacial Maximum Biomes Reconstructed from Pollen and Plant Macrofossil Data from Northern Eurasia, J. Biogeogr., 2000, vol. 27, pp. 609–620.

    Article  Google Scholar 

  61. Peat, H.J., Clarke, A., and Convey, P., Diversity and Biogeography of the Antarctic Flora, J. Biogeogr., 2007, vol. 34, pp. 132–146.

    Article  Google Scholar 

  62. Lewis Smith, R.I., The Enigma of Colobantus quitensis and Deschampsia antarctica in Antarctica Antarctic Biology in a Global Context, Huiskes, A.H.L., et al., Eds., Leiden: Backhuys Publ., 2003, pp. 234–239.

    Google Scholar 

  63. Wulff, E.V., An Introduction to Historical Plant Geography, Waltham, Mass., 1943.

    Google Scholar 

  64. Wulff, E.V., Istoricheskaya geografiya rastenii: Istoriya flor Zemnogo shara (Historical Geography of Plants: The History of Earth’s Floras), Moscow, Leningrad: Izd-vo AN SSSR, 1944.

    Google Scholar 

  65. Aleksandrova, V.D., Geobotanical Regionalization of the Arctic and Antarctic, in Komarovskie chteniya (Komarov Lectures), Leningrad: Nauka, 1976, issue 29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mosyakin.

Additional information

The text was submitted by the authors in English.

About this article

Cite this article

Mosyakin, S.L., Bezusko, L.G. & Mosyakin, A.S. Origins of native vascular plants of antarctica: Comments from a historical phytogeography viewpoint. Cytol. Genet. 41, 308–316 (2007). https://doi.org/10.3103/S009545270705009X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545270705009X

Keywords

  • Last Glacial Maximum
  • Drake Passage
  • Vicariance Model
  • Native Vascular Plant
  • Antarctic Population