Skip to main content
Log in

Conductivity of Hafnium Oxide Films Obtained by Electron-Beam Sputtering

  • Condensed Matter Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Hafnium oxide films HfO\({}_{x}\) with a thickness of about 40 nm were obtained by electron beam sputtering at different oxygen flow rates in the chamber. The electrophysical properties of the films were studied in air and in a vacuum. It has been shown that the temperature dependences of film conductivity, measured in a vacuum in the temperature range from 20 to 180\({}^{\circ}\)C, have an activation character with an activation energy of 0.82\(\pm\) 0.02 eV. It is assumed that in the resulting films, charge transfer is determined by the activation of electrons into the conduction band from the donor level associated with oxygen vacancies. It was found that the conductivity of the films in air changes greatly with varying the oxygen flow, while in a vacuum, the conductivity is practically independent of the oxygen flow. This indicates significant differences in the surface properties of the films obtained at different oxygen flows in the chamber during the deposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Ed. by D. Ielmini and R. Waser (Wiley-VCH, 2016). https://doi.org/10.1002/9783527680870

    Book  Google Scholar 

  2. I. Valov, ChemElectroChem 1, 26 (2014). https://doi.org/10.1002/celc.201300165

    Article  Google Scholar 

  3. C. Chen, C. Song, J. Yang, et al., Appl. Phys. Lett. 100, 253509 (2012). https://doi.org/10.1063/1.4730601

  4. S. J. Song, J. Y. Seok, J. H. Yoon, et al., Sci. Rep. 3, 3443 (2013). https://doi.org/10.1038/srep03443

    Article  Google Scholar 

  5. K. M. Kim, B. J. Choi, S. J. Song, et al., J. Electrochem. Soc. 156, G213 (2009). https://doi.org/10.1149/1.3240201

    Article  Google Scholar 

  6. M. N. Martyshov, A. V. Emelyanov, V. A. Demin, et al., Phys. Rev. Appl. 14, 034016 (2020). https://doi.org/10.1103/PhysRevApplied.14.034016

  7. H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, Phys. Status Solidi A 210, 1822 (2013). https://doi.org/10.1002/pssa.201329021

    Article  ADS  Google Scholar 

  8. C. Chen, Y. C. Yang, F. Zeng, and F. Pan, Appl. Phys. Lett. 97, 083502 (2010). https://doi.org/10.1063/1.3483158

  9. T. Sakamoto, H. Sunamura, H. Kawaura, et al., Appl. Phys. Lett. 82, 3032 (2003). https://doi.org/10.1063/1.1572964

    Article  ADS  Google Scholar 

  10. P. Y. Lai, and J.-S. Chen, IEEE Electron Device Lett. 32, 387 (2011). https://doi.org/10.1109/LED.2010.2099102

    Article  ADS  Google Scholar 

  11. T. Kondo, S. M. Lee, M. Malicki, et al., Adv. Funct. Mater. 18, 1112 (2008). https://doi.org/10.1002/adfm.200700567

    Article  Google Scholar 

  12. S. Goswami, S. Nandy, A. N. Banerjee, et al., Adv. Mater. 29, 1703079 (2017). https://doi.org/10.1002/adma.201703079

  13. B. S. Shvetsov, A. N. Matsukatova, A. A. Minnekhanov, et al., Tech. Phys. Lett. 45, 1103 (2019). https://doi.org/10.1134/S1063785019110130

    Article  ADS  Google Scholar 

  14. S. Dirkmann, J. Kaiser, and Ch. Wenger, ACS Appl. Mater. Interfaces 10, 14857 (2018). https://doi.org/10.1021/acsami.7b19836

    Article  Google Scholar 

  15. V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mater. Res. Express 5, 016402 (2018). https://doi.org/10.1088/2053-1591/aaa099

  16. Y. Zhang, G. Q. Mao, X. Zhao, et al., Nat. Commun. 12, 7232 (2021). https://doi.org/10.1038/s41467-021-27575-z

    Article  ADS  Google Scholar 

  17. M. Ismail, U. Chand, Ch. Mahata, et al., J. Mater. Sci. Technol. 96, 94 (2022). https://doi.org/10.1016/j.jmst.2021.04.025

    Article  Google Scholar 

  18. P. Jančovič, B. Hudec, E. Dobročka, et al., Appl. Surf. Sci. 312, 112 (2014). https://doi.org/10.1016/j.apsusc.2014.05.018

    Article  ADS  Google Scholar 

  19. H. GarcaHa, J. Boo, G. Vinuesa, et al., Electronics 10, 2816 (2021). https://doi.org/10.3390/electronics10222816

    Article  Google Scholar 

  20. T. Guo, T. Tan, Z. Liu, J. Mater. Sci. 50, 7043 (2015). https://doi.org/10.1007/s10853-015-9257-9

    Article  ADS  Google Scholar 

  21. M. F. Quiñonez, L. Suarez, J. E. Ordoñez, et al., Mater. Today: Proc. 14, 139. https://doi.org/10.1016/j.matpr.2019.05.071

  22. M. I. Hossain, Y. Zakaria, A. Zikri, et al., Mater. Technol. 37, 248 (2022). https://doi.org/10.1080/10667857.2020.1830551

    Article  ADS  Google Scholar 

  23. W. Banerjee, Q. Liu, and H. Hwang, J. Appl. Phys. 127, 051101 (2020). https://doi.org/10.1063/1.5136264

  24. D. S. Jeong and Ch. S. Hwang, J. Appl. Phys. 98, 113701 (2005). https://doi.org/10.1063/1.2135895

  25. F. Gunkel, D. V. Christensen, Y. Z. Chen, and N. Pryds, Appl. Phys. Lett. 116, 120505 (2020). doi https://doi.org/10.1063/1.5143309.

  26. E. A. Forsh, A. V. Marikutsa, M. N. Martyshov, P. A. Forsh, et al., J. Exp. Theor. Phys. 111, 653 (2010). https://doi.org/10.1134/S106377611010016X

    Article  ADS  Google Scholar 

  27. T. V. Belysheva, M. I. Ikim, A. S. Ilin, et al., Russ. J. Phys. Chem. B 10, 810 (2016). https://doi.org/10.1134/S1990793116050171

    Article  Google Scholar 

  28. V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, Phys. Rep. 613, 1 (2016). https://doi.org/10.1016/j.physrep.2015.11.002

    Article  ADS  MathSciNet  Google Scholar 

  29. T. V. Perevalov, V. Sh. Aliev, and V. A. Gritsenko, Microelectron. Eng. 109, 21 (2013). https://doi.org/10.1016/j.mee.2013.03.005

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to K.N. Garbuzov for assistance in manufacturing the samples.

Funding

The research was carried out with the support of the grant from the Russian Science Foundation no. 23-19-00268, https://rscf.ru/project/23-19-00268/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. D Kuchumov, M. N Martyshov or D. M Zhigunov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchumov, I.D., Martyshov, M.N., Zhigunov, D.M. et al. Conductivity of Hafnium Oxide Films Obtained by Electron-Beam Sputtering. Moscow Univ. Phys. 79, 64–68 (2024). https://doi.org/10.3103/S0027134924700139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134924700139

Keywords:

Navigation