Skip to main content
Log in

SMAP Sea Surface Salinity Improvement in the Arctic Region Using Machine Learning Approaches

  • MACHINE LEARNING IN NATURAL SCIENCES
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Sea surface salinity (SSS) is a key physicochemical characteristic of the ocean that plays a significant role in describing the climate. Routine SSS retrieval algorithms exploiting remote sensing data have been developed and validated with high precision for typical regions of the World Ocean. Their effectiveness is worse in the Arctic though. To address this limitation, in this study, we employ machine learning (ML) techniques to enhance the quality of standard algorithms. We evaluate a few ML models, ranging from classical methods that process vector features, provided by standard Soil Moisture Active Passive (SMAP) satellite salinity algorithms, to deep artificial neural networks that combine vector features with two-dimensional fields extracted from the ERA5 reanalysis. We validate these models using in situ the data collected by the Shirshov Institute of Oceanology RAS during the expeditions to the Barents, Kara, Laptev, and East Siberian seas from 2015 to 2021. The results of the study indicate that the SMAP sea surface salinity standard product is improved in these regions. The ML models developed in this study make it possible to further study the Arctic region using enhanced sea surface salinity maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. P. J. Durack, T. Lee, N. T. Vinogradova, and D. Stammer, Nat. Clim. Change 6, 228 (2016). https://doi.org/10.1038/nclimate2946

    Article  ADS  Google Scholar 

  2. E. C. Carmack, Deep Sea Res., Part II 54, 2578 (2007). https://doi.org/10.1016/j.dsr2.2007.08.018

    Article  ADS  Google Scholar 

  3. E. P. Dinnat, D. M. Le Vine, J. Boutin, et al., Remote Sens. 11, 750 (2019). https://doi.org/10.3390/rs11070750

    Article  ADS  Google Scholar 

  4. N. Reul, S. A. Grodsky, M. Arias, et al., Remote Sens. Environ. 242, 111769 (2020). https://doi.org/10.1016/j.rse.2020.111769

  5. A. Supply, J. Boutin, J.-L. Vergely, et al., Remote Sens. Environ. 249, 112027 (2020). https://doi.org/10.1016/j.rse.2020.112027

  6. S. Qin, H. Wang, J. Zhu, et al., Acta Oceanol. Sin. 39, 148 (2020). https://doi.org/10.1007/s13131-020-1533-0

    Article  Google Scholar 

  7. W. Tang, S. Yueh, D. Yang, et al., Remote Sens. 10, 869 (2018). https://doi.org/10.3390/rs10060869

    Article  ADS  Google Scholar 

  8. E. C. Carmack, M. Yamamoto-Kawai, T. W. N. Haine, et al., J. Geophys. Res. Biogeosci. 121, 675 (2016). https://doi.org/10.1002/2015JG003140

    Article  Google Scholar 

  9. A. Matsuoka, M. Babin, and E. C. Devred, Remote Sens. Environ. 184, 124 (2016). https://doi.org/10.1016/j.rse.2016.05.006

    Article  ADS  Google Scholar 

  10. E. Jang, Y. J. Kim, J. Im, and Y.-G. Park, GIScience Remote Sens. 58, 138 (2021). https://doi.org/10.1080/15481603.2021.1872228

    Article  Google Scholar 

  11. D. Cho, C. Yoo, J. Im, et al., GIScience Remote Sens. 57, 633 (2020). https://doi.org/10.1080/15481603.2020.1766768

    Article  Google Scholar 

  12. T. D. Pham, K. Yoshino, and D. T. Bui, GIScience Remote Sens. 54, 329 (2017). https://doi.org/10.1080/15481603.2016.1269869

    Article  Google Scholar 

  13. L. Breiman, Mach. Learn. 45, 5 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  14. F. Pedregosa, G. Varoquaux, A. Gramfort, et al., J. Mach. Learn. Res. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  15. A. V. Dorogush, V. Ershov, and A. Gulin, arXiv Preprint (2018). https://doi.org/10.48550/arXiv.1810.11363

  16. T. Akiba, S. Sano, T. Yanase, et al., in Proc. 25th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Anchorage, Alaska, 2019 (Association for Computing Machinery, New York, 2019), pp. 2623–2631. https://doi.org/10.1145/3292500.3330701

  17. A. Paszke, S. Gross, F. Massa, et al., in 2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing–NeurIPS Edition (EMC2-NIPS 2019), Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (IEEE, Vancouver, British Columbia, Canada, 2019), p. 8024.

Download references

Funding

This research was funded by the Moscow Institute of Physics and Technology Development Program (Priority-2030) (numerical modelling) and the Russian Science Foundation, research project 23-17-00087 (processing of in situ data).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Savin or M. A. Krinitskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.S., Krinitskiy, M.A. & Osadchiev, A.A. SMAP Sea Surface Salinity Improvement in the Arctic Region Using Machine Learning Approaches. Moscow Univ. Phys. 78 (Suppl 1), S210–S216 (2023). https://doi.org/10.3103/S0027134923070299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134923070299

Keywords:

Navigation