Skip to main content
Log in

Estimating Significant Wave Height from X-Band Navigation Radar Using Convolutional Neural Networks

  • MACHINE LEARNING IN NATURAL SCIENCES
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Marine radars are vital for safe navigation at sea, detecting vessels and obstacles. Sea clutter, caused by Bragg scattering, is usually filtered out as noise. It becomes detectable in unfiltered radar images, acquired using SeaVision hardware package, when wind speed and wave height exceed certain thresholds. The parameters of wind-induced ocean waves can be determined using these images; however, traditional spectral methods for obtaining wave characteristics face limitations in improving accuracy. Deep learning techniques offer advantages in image processing tasks, being more robust and able to handle noisier data, yet delivering the results without Fourier transformations and not necessarily requiring long series of radar imagery. In our study, we present the method exploiting convolutional neural networks (CNNs) for estimating wave characteristics from shipborne radar data captured using SeaVision package. In particular, we train our CNN to infer significant wave height using estimates provided by the Spotter buoy as ground truth. Our CNN-based method has an advantage over the classical methods due to the low requirements for radar image data since we process just one SeaVision snapshot, whereas classical method requires more than 20 min of radar images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. J. C. N. Borge, K. Reichert, and J. Dittmer, Coastal Eng. 37, 331 (1999). https://doi.org/10.1016/S0378-3839(99)00032-0

    Article  Google Scholar 

  2. R. Gangeskar, in Proc. IGARSS 2000. IEEE 2000 Int. Geoscience and Remote Sensing Symp., Honolulu, Hawaii, 2000 (IEEE, 2000), Vol. 7, pp. 2952–2959. https://doi.org/10.1109/IGARSS.2000.860301

  3. C. Greenwood, A. Vogler, J. Morrison, and A. Murray, Remote Sens. Environ. 204, 439 (2018). https://doi.org/10.1016/j.rse.2017.10.012

    Article  ADS  Google Scholar 

  4. G.-I. Park, J.-W. Choi, Y.-T. Kang, et al., J. Ship Ocean Technol. 10, 34 (2006).

    Google Scholar 

  5. J. Horstmann, J. Bödewadt, R. Carrasco, et al., Sensors 21(23), 7828 (2021). https://doi.org/10.3390/s21237828

    Article  ADS  Google Scholar 

  6. N. Tilinina, D. Ivonin, A. Gavrikov, et al., Earth Syst. Sci. Data 14, 3615 (2022). https://doi.org/10.5194/essd-14-3615-2022

    Article  ADS  Google Scholar 

  7. R. Vicen-Bueno, C. Lido-Muela, and J. C. Nieto-Borge. EURASIP J. Adv. Signal Process. 2012, 84 (2012). https://doi.org/10.1186/1687-6180-2012-84

    Article  ADS  Google Scholar 

  8. L. Cornejo-Bueno, J. C. Nieto Borge, E. Alexandre, et al., Coastal Eng. 114, 233 (2016). https://doi.org/10.1016/j.coastaleng.2016.04.007

    Article  Google Scholar 

  9. N. K. Kumar, R. Savitha, and A. al Mamun, Ocean Eng. 129, 605 (2017). https://doi.org/10.1016/j.oceaneng.2016.10.033

    Article  Google Scholar 

  10. J. Mahjoobi and E. Adeli Mosabbeb, Ocean Eng. 36, 339 (2009). https://doi.org/10.1016/j.oceaneng.2009.01.001

    Article  Google Scholar 

  11. M. S. Elbisy, J. Coastal Res. 31, 892 (2015). https://doi.org/10.2112/JCOASTRES-D-13-00087.1

    Article  Google Scholar 

  12. S. Salcedo-Sanz, J. C. Nieto Borge, L. Carro-Calvo, et al., Ocean Eng. 101, 244–253 (2015). https://doi.org/10.1016/j.oceaneng.2015.04.041

    Article  Google Scholar 

  13. M. Krinitskiy, P. Verezemskaya, K. Grashchenkov, et al., Atmosphere, 9, 426 (2018). https://doi.org/10.3390/atmos9110426

    Article  ADS  Google Scholar 

  14. M. Krinitskiy, M. Aleksandrova, P. Verezemskaya, et al., Remote Sens. 13, 326 (2021). https://doi.org/10.3390/rs13020326

    Article  ADS  Google Scholar 

  15. M. Krinitskiy, A. Sprygin, S. Elizarov, et al., Remote Sens. 15, 3493 (2023). https://doi.org/10.3390/rs15143493

    Article  ADS  Google Scholar 

  16. M. Krinitskiy, V. Koshkina, M. Borisov, et al., Remote Sens. 15, 1720 (2023). https://doi.org/10.3390/rs15071720

    Article  ADS  Google Scholar 

  17. H. Choi, M. Park, G. Son, et al., Ocean Eng. 201, 107129 (2020). https://doi.org/10.1016/j.oceaneng.2020.107129

  18. S. Xue, X. Geng, X. H. Yan, et al., J. Oceanogr. 76, 465 (2020). https://doi.org/10.1007/s10872-020-00557-3

    Article  Google Scholar 

  19. W. Duan, K. Yang, L. Huang, and X. Ma, Remote Sens. 12, 1117 (2020). https://doi.org/10.3390/rs12071117

    Article  ADS  Google Scholar 

  20. X. Chen and W. Huang, IEEE Trans. Geosci. Remote Sens. 60, 4201711 (2022). https://doi.org/10.1109/TGRS.2021.3074075

  21. C. C. Wei and H. C. Chang, Sensors 21, 5234 (2021). https://doi.org/10.3390/s21155234

    Article  ADS  Google Scholar 

  22. W. Huang, X. Liu, and E. W. Gill, Remote Sens. 9, 1261 (2017). https://doi.org/10.3390/rs9121261

    Article  ADS  Google Scholar 

  23. A. Gavrikov, D. Ivonin, V. Sharmar, et al., PANGAEA (2021). https://doi.org/10.1594/PANGAEA.939620

  24. K. Raghukumar, G. Chang, F. Spada, et al., J. Atmos. Ocean Technol. 36, 1127 (2019). https://doi.org/10.1175/JTECH-D-18-0151.1

    Article  ADS  Google Scholar 

  25. K. He, X. Zhang, S. Ren, and J. Sun, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, 2016 (IEEE, 2016), pp. 770–778.

  26. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, et al., arXiv Preprint (2020). https://doi.org/10.48550/arXiv.2010.08895

  27. R. Liu, J. Lehman, P. Molino, F. Petroski Such, et al., in Proceedings of the Advances in Neural Information Processing Systems (NeurIPS 2018), Vol. 31.

  28. D. P. Kingma and J. Ba, arXiv Preprint (2014). https://doi.org/10.48550/arXiv.1412.6980

  29. I. Loshchilov and F. Hutter, arXiv Preprint (2016). https://doi.org/10.48550/arXiv.1608.03983

  30. C. Bergmeir, R. J. Hyndman, B. Koo, Comput. Stat. Data Anal. 120, 70 (2018). https://doi.org/10.1016/j.csda.2017.11.003

    Article  Google Scholar 

  31. C. Bergmeir, J. M. BenYнtez, Inf. Sci. 191, 192 (2012). https://doi.org/10.1016/j.ins.2011.12.028

    Article  Google Scholar 

  32. J. Racine, J. Econometrics 99, 39 (2000). https://doi.org/10.1016/S0304-4076(00)00030-0

    Article  Google Scholar 

  33. S. Arlot, A. Celisse, Stat. Surv. 4, 40 (2010). https://doi.org/10.1214/09-SS054

    Article  MathSciNet  Google Scholar 

Download references

Funding

A method for estimating a significant wave height has been developed with support from the program FMWE-2022-0002. Training and validation of the artificial neural network was supported by the program PRIORITY 2030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Krinitskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krinitskiy, M.A., Golikov, V.A., Anikin, N.N. et al. Estimating Significant Wave Height from X-Band Navigation Radar Using Convolutional Neural Networks. Moscow Univ. Phys. 78 (Suppl 1), S128–S137 (2023). https://doi.org/10.3103/S0027134923070159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134923070159

Keywords:

Navigation