Skip to main content
Log in

Influence of the Bound Electron–Hole Pairs Dissociation Probability Field Dependence Form on the Photocurrent and Spatial Resolution of Organic Field-Effect Phototransistors

  • Optics and Spectriscopy. Laser Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In this work, numerical simulations are used to study ambipolar organic field-effect phototransistors, in which a spatially localized photoelectric effect can take place. This effect consists in the fact that there is a small spatially localized photosensitive region in the transistor channel, the position of which can be controlled by changing the gate voltage. The purpose of this work is to analyze the relationship between the form of the field dependence of the bound electron-hole pairs (\(e/h\) pairs) dissociation probability and characteristics of the studied ambipolar phototransistors such as normalized photocurrent, spatial resolution, and response time. It is shown that the optimal form of the field dependence of \(e/h\) pairs dissociation probability is stepwise-like form, which can provide a high spatial resolution at high values of the normalized photocurrent without degrading the response time of the phototransistor. This shape can be achieved when the organic semiconductor has an extremely narrow distribution of \(e/h\) pairs by size, described by the delta function. Also, using the example of several distributions of various shapes, it is shown that a decrease in the width of the distribution leads to an increase in the spatial resolution. Approaches to the selection and modification of organic semiconductor materials that would provide the most pronounced spatially localized photoelectric effect in ambipolar field-effect transistors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. A. Facchetti, Chem. Mater. 23, 733 (2011). https://doi.org/10.1021/cm102419z

    Article  CAS  Google Scholar 

  2. A. R. Murphy and J. M. J. Früchet, Chem. Rev. 107, 1066 (2007). https://doi.org/10.1021/cr0501386

    Article  PubMed  CAS  Google Scholar 

  3. J. C. Hummelen, B. W. Knight, F. LePeq, et al., J. Org. Chem. 60, 532 (1995). https://doi.org/10.1021/jo00108a012

    Article  CAS  Google Scholar 

  4. X.-Z. Bo, C. Y. Lee, M. S. Strano, et al., Appl. Phys. Lett. 86, 182102 (2005). https://doi.org/10.1063/1.1906316

  5. J. H. Burroughes, D. D. C. Bradley, A.R. Brown, et al., Nature 347, 539 (1990). https://doi.org/10.1038/347539a0

    Article  ADS  CAS  Google Scholar 

  6. G. Horowitz, Adv. Mater. 10, 365 (1998). https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U

    Article  CAS  Google Scholar 

  7. G. Yu, J. Gao, J. C. Hummelen, et al., Science 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.178

    Article  ADS  CAS  Google Scholar 

  8. A. L. Mannanov, D. O. Balakirev, E. D. Papkovskaya, et al., Molecules 28, 368 (2023). https://doi.org/10.3390/molecules28010368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. K.-J. Baeg, M. Binda, D. Natali, et al., Adv. Mater. 25, 4267 (2013). https://doi.org/10.1002/adma.201204979

    Article  PubMed  CAS  Google Scholar 

  10. A. R. Tuktarov, R. B. Salikhov, A. A. Khuzin, et al., RSC Adv. 9, 7505 (2019). https://doi.org/10.1039/C9RA00939F

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  11. A. N. Aleshin, I. P. Shcherbakov, and F. S. Fe- dichkin, Phys. Solid State 54, 1586 (2012). https://doi.org/10.1134/S1063783412080033

    Article  CAS  Google Scholar 

  12. S. Nam, H. Han, J. Seo, et al., Adv. Electron. Mater. 2, 1600264 (2016). https://doi.org/10.1002/aelm.201600264

  13. V. A. Trukhanov, JETP Lett. 109, 776 (2019). https://doi.org/10.1134/S0021364019120105

    Article  ADS  CAS  Google Scholar 

  14. B. P. Rand, J. Xue, M. Lange, and S. R. Forrest, IEEE Photonics Tech. Lett. 15, 1279 (2003). https://doi.org/10.1109/LPT.2003.816659

    Article  ADS  Google Scholar 

  15. D. Kabra, T. B. Singh, and K. S. Narayan, Appl. Phys. Lett. 85, 5073 (2004). https://doi.org/10.1063/1.1823597

    Article  ADS  CAS  Google Scholar 

  16. V. A. Trukhanov, Moscow Univ. Phys. Bull. 75, 342–353 (2020). https://doi.org/10.3103/S0027134920040128

    Article  ADS  Google Scholar 

  17. L. Onsager, Phys. Rev. 54, 554 (1938). https://doi.org/10.1103/PhysRev.54.554

    Article  ADS  CAS  Google Scholar 

  18. C. L. Braun, J. Chem. Phys. 80, 4157 (1984). https://doi.org/10.1063/1.447243

    Article  ADS  CAS  Google Scholar 

  19. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, Phys. Rev. B 72, 085205 (2005). https://doi.org/10.1103/PhysRevB.72.085205

  20. A. L. Mannanov, P. S. Savchenko, Yu. N. Luponosov, et al., Org. Electron. 78, 105588 (2020). https://doi.org/10.1016/j.orgel.2019.105588

  21. V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, Phys. Rev. Lett. 93, 216601 (2004). https://doi.org/10.1103/PhysRevLett.93.216601

  22. A. Mozumbder, J. Chem. Phys. 60, 4305 (1974). https://doi.org/10.1063/1.1680905

    Article  ADS  Google Scholar 

  23. D. S. Sethi, H. T. Choi, and C. L. Braun, Chem. Phys. Lett. 74, 223 (1980). https://doi.org/10.1016/0009-2614(80)85146-3

    Article  ADS  CAS  Google Scholar 

  24. T. E. Goliber and J. H. Perlstein, J. Chem. Phys. 80, 4162 (1984). https://doi.org/10.1063/1.447244

    Article  ADS  CAS  Google Scholar 

  25. M. Saladina, P. S. Marqués, A. Markina, et al., Adv. Funct. Mater. 31, 2007479 (2021). https://doi.org/10.1002/adfm.202007479

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-79-10122, https://rscf.ru/ project/22-79-10122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Trukhanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trukhanov, V.A. Influence of the Bound Electron–Hole Pairs Dissociation Probability Field Dependence Form on the Photocurrent and Spatial Resolution of Organic Field-Effect Phototransistors. Moscow Univ. Phys. 78, 817–827 (2023). https://doi.org/10.3103/S0027134923060188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134923060188

Keywords:

Navigation