Skip to main content
Log in

Simulation of Particle Interactions with Matter Using PHITS Monte Carlo Code: Physical Aspects of Bragg Curve for Carbon Ion Therapy

  • Physics of Nuclei and Elementary Particles
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In recent times, Monte Carlo simulations are gaining widespread recognition as the most precise tool for calculating particle interactions with matter. In this study, we investigated two primary aspects. Firstly, we examined how the average excitation energy of water \((I_{W})\) influences the location of the Bragg peak (BP). Secondly, we used the particle and heavy ion transport code system (PHITS) to study the Bragg curve of \({}^{12}\)C ion beam having an energy of 200 MeV/u in three different mediums: water, soft tissue, and bone. Lastly, we examined the impact of secondary particles on the overall dose. Our findings indicate that the average excitation energy of water strongly influences the position of the BP. The tail dose beyond the BP primarily results from secondary fragments of the primary carbon ion beams. Furthermore, the PHITS code accurately reproduces the measured Bragg curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. R. R. Wilson, Radiology 47, 487 (1946). PMID: 20274616. https://doi.org/10.1148/47.5.487

    Article  PubMed  CAS  Google Scholar 

  2. O. Jakel, Br. J. Radiol. 93, 20190428 (2020). https://doi.org/10.1259/bjr.20190428

  3. M. Saager, Ch. Glowa, P. Peschke, et al., Radiat. Oncol. 15, 6 (2020). https://doi.org/10.1186/s13014-019-1439-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. U. Amaldi, G. Kraft, Rep. Prog. Phys. 68, 1861 (2005). https://doi.org/10.1088/0034-4885/68/8/R04

    Article  ADS  CAS  Google Scholar 

  5. I. Kantemiris, P. Karaiskos, P. Papagiannis, and A. Angelopoulos, Med. Phys. 38, 6585 (2011). https://doi.org/10.1118/1.3662911

    Article  PubMed  CAS  Google Scholar 

  6. Ch. P. Karger and P, Peschke, Phys. Med. Biol. 63, 01TR02 (2017). https://doi.org/10.1088/1361-6560/aa9102

  7. J. M. Pitarke, R. H. Ritchie, P. M. Echenique, and E. Zaremba, Eur. Phys. Lett. 24, 613 (1993). https://doi.org/10.1209/0295-5075/24/7/018

    Article  ADS  CAS  Google Scholar 

  8. M. J. Berger, M. Inokuti, H. H. Anderson, et al., ICRU Report No. 37 (1984).

  9. T. Sato, Y. Iwamoto, Sh. Hashimoto, et al., J. Nucl. Med. Technol. 55, 684 (2018). https://doi.org/10.1080/00223131.2017.1419890

    Article  CAS  Google Scholar 

  10. A. Bardane, J. Tajmouaati, and A. Maghnouj, Moscow Univ. Phys. Bull. 75, 58 (2020). https://doi.org/10.3103/S002713492001004X

    Article  ADS  Google Scholar 

  11. S. Agostinelli, J. Allison, K. al Amako, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  12. A. Ferrari, J. Ranft, P. R. Sala, and A. Fasso, FLUKA: A multi-particle transport code (Program version 2005) no. CERN-2005-10 (CERN, 2005). https://doi.org/10.2172/877507

    Book  Google Scholar 

  13. G. Battistoni, F. Cerutti, A. Fasso, et al., in AIP Conf. Proc. (American Institute of Physics, 2007), Vol. 896, p. 31.

    Google Scholar 

  14. M. E. Rising, J. Ch. Armstrong, S. R. Bolding, et al., MCNPCo Code Version 6.3.0 Release Notes. (LA-UR-22-33103, Rev. 1), January, 2023.

  15. A. V. Dementyev and N. M. Sobolevsky, Radiat. Meas. 30, 553 (1999). https://doi.org/10.1016/S1350-4487(99)00231-0

    Article  CAS  Google Scholar 

  16. A. Boudard, J. Cugnon, J.-C. David, et al., Phys. Rev. C 87, 014606 (2013). https://doi.org/10.1103/PhysRevC.87.014606

  17. K. Niita, S. Chiba, T. Maruyama, et al. Phys. Rev. C 52, 2620 (1995). https://doi.org/10.1103/PhysRevC.52.2620

    Article  ADS  CAS  Google Scholar 

  18. K. Iida, A. Kohama, and K. Oyamatsu, J. Phys. Soc. Jpn. 76, 044201 (2007). https://doi.org/10.1143/JPSJ.76.044201

  19. S. Furihata, in Proc. Monte Carlo 2000 Conf., Lisbon, 2000 (Springer, 2001), p. 1045.

  20. K. Niita, Y. Iwamoto, T. Sato, et al., in Int. Conf. on Nuclear Data for Science and Technology (EDP Sciences, 2007), p. 1167.

  21. H. Hirayama, Y. Namito, A. F. Bielajew, S. J. Wil- derman, and W. R. Nelson, The egs5 code system, SLAC-Report-730, 10:877459 (2005). https://doi.org/10.2172/877459

  22. N. Ounoughi, Y. Dribi, A. Boukhellout, and F. Kharfi, Pol. J. Med. Phys. Eng. 28, 160 (2022). https://doi.org/10.2478/pjmpe-2022-0019

    Article  Google Scholar 

  23. H. Weick, H. Geissel, N. Iwasa, et al., GSI Scientific Report, p. 2018-1 (2017).

  24. P. Steidl, D. Schardt, Gh. Iancu, et al., Verh. Dtsch. Phys. Ges. 43 (2008).

  25. H. Bischel and T. Hiraoka, Nucl. Instrum. Methods Phys. Res., Sect. B 66, 345 (1992). https://doi.org/10.1016/0168-583X(92)95995-4

    Article  Google Scholar 

  26. H. Bichsel, T. Hiraoka, and K. Omata, Radiat. Res. 153 (2), 208 (2000). https://doi.org/10.1667/0033-7587(2000)153[0208]2.0.CO;2

    Article  ADS  PubMed  CAS  Google Scholar 

  27. P. Helmut, Nucl. Instrum. Methods Phys. Res., Sect. B 255, 435 (2007). https://doi.org/10.1016/j.nimb.2006.12.034

    Article  CAS  Google Scholar 

  28. E. Haettner, H. Iwase, M. Krämer, G. Kraft, and D. Schardt, Phys. Med. Biol. 58, 8265 (2013). https://doi.org/10.1088/0031-9155/58/23/8265

    Article  PubMed  CAS  Google Scholar 

  29. G. F. Knoll. Radiation Detection and Measurement (Wiley, 2010).

    Google Scholar 

  30. J. Soltani-Nabipour, A. Khorshidi, F. Shojai, and Kh. Khorami, Nucl. Eng. Technol. 52, 2410 (2020). https://doi.org/10.1016/j.net.2020.03.010

    Article  CAS  Google Scholar 

  31. C. K. Ying, D. Bolst, L. T. Tran, et al., J. Phys.: Conf. Ser. 851, 012033 (2017). https://doi.org/10.1088/1742-6596/851/1/012033

Download references

ACKNOWLEDGEMENTS

The Particle and Heavy Ion Transport System (PHITS) code was made available to the authors by the Director of the Center for Computational Science and e-Systems at the Japan Atomic Energy Agency (JAEA). We also acknowledge the contributions of the scientists from the Materials and Subatomic Physics Laboratory, faculty of science, Ibn Tofail University, Kenitra.

Funding

This work was supported by the Intellect Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane El Bekkouri.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Bekkouri, H., Al Ibrahmi, E.M., El-Asery, M. et al. Simulation of Particle Interactions with Matter Using PHITS Monte Carlo Code: Physical Aspects of Bragg Curve for Carbon Ion Therapy. Moscow Univ. Phys. 78, 804–809 (2023). https://doi.org/10.3103/S0027134923060048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134923060048

Keywords:

Navigation