Skip to main content
Log in

Contacts for SiC Nano-Microwatt Energy Converters

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of \({}^{14}\)C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of \(n\)- or \(p\)-type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. C. Zhou et al., ECS J. Solid State Sci. Technol. 10, 027005 (2021). https://doi.org/10.1149/2162-8777/abe423

    Article  ADS  Google Scholar 

  2. V. Bormashov et al., Phys. Status Solidi Appl. Mater. Sci. 212, 2539 (2015). https://doi.org/10.1002/pssa.201532214

    Article  ADS  Google Scholar 

  3. S. Theirrattanakul and M. Prelas, Appl. Radiat. Isot. 127, 41 (2017). https://doi.org/10.1016/j.apradiso.2017.05.005

    Article  Google Scholar 

  4. J. Russo et al., Appl. Radiat. Isot. 125, 66 (2017). https://doi.org/10.1002/er.4563

    Article  Google Scholar 

  5. Y. P. Liu et al., Sci. China Technol. Sci. 60, 282 (2017). https://doi.org/10.1016/j.jclepro.2018.02.282

    Article  ADS  Google Scholar 

  6. Q. Zhang et al., Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems 1177 (2016). https://doi.org/10.1109/MEMSYS.2016.7421830

  7. A. V. Gurskaya, M. V. Dolgopolov, and V. I. Che- purnov, Physics of Particles and Nuclei 48 (6), 941 (2017). https://doi.org/10.1134/S106377961706020X

    Article  ADS  Google Scholar 

  8. T. Shimaoka et al., Appl. Phys. Lett. 117, 103902 (2020). https://doi.org/10.1063/5.0020135

    Article  ADS  Google Scholar 

  9. X. Li et al., Nucl. Sci. Tech. 31, 18 (2020). https://doi.org/10.1007/s41365-020-0723-y

    Article  Google Scholar 

  10. O. L. Surnin and V. I. Chepurnov, RF Patent 2733616 C2, 05.10.2020.

  11. J. D. Hong and R. F. Davis, Journal of the American Ceramic Society 63, 546 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10762.x

    Article  Google Scholar 

  12. M. H. Hon and R. F. Mater, Journal of Materials Science 14, 2411 (1979). https://doi.org/10.1007/BF00737031.

    Article  ADS  Google Scholar 

  13. M. Dolgopolov et al., EPJ Web of conferences 222, 02012 (2019). https://doi.org/10.1051/epjconf/201922202012

  14. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  Google Scholar 

  15. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  16. M. V. Dolgopolov et al., Journal of Physics: Conference Series 1686 (1), 012040 (2020). https://doi.org/10.1088/1742-6596/1686/1/012040

    Article  Google Scholar 

  17. S. Y. Davydov, Phys. Solid State 46, 238 (2004). https://doi.org/10.1134/1.1649417

    Article  ADS  Google Scholar 

  18. N. Liu, W. Wang, and L. Guo, Modern Physics Letters B 31 (12), 1750116 (2017). https://doi.org/10.1142/S0217984917501160

    Article  ADS  Google Scholar 

  19. GEANT4 Documentation, https://geant4.web.cern.ch.

  20. M. V. Dolgopolov et al., Computational Nano- technology 8 (3), 59 (2021). https://doi.org/10.33693/2313-223X-2021-8-3-59-68

  21. V. A. Pokoeva and K. P. Sivakova, Physics of Wave Processes and Radio Systems 10 (2), 110 (2007).

    Google Scholar 

  22. V. I. Chepurnov, Vestnik Samarskogo Gosu- darstvennogo Universiteta. Estestvenno-Nauchnaya Seriya 7 (118), 145 (2014). https://doi.org/10.18287/2541-7525-2014-20-7-145-162

    Article  Google Scholar 

  23. S. A. Radzhapov et al., Comp. Nanotechnol., No. 3, 65 (2018).

Download references

ACKNOWLEDGMENTS

M.V. Dolgopolov expresses gratitude to the organizers of the LXXII International Conference ‘‘NUCLEUS-2022’’ for the opportunity to speak and discuss the results of the study.

Funding

Part of the research of A.V. Gurskaya was supported by the scholarship of the President of Russia 2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Gurskaya, M. V. Dolgopolov, V. I. Chepurnov or S. A. Radzhapov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurskaya, A.V., Dolgopolov, M.V., Chepurnov, V.I. et al. Contacts for SiC Nano-Microwatt Energy Converters. Moscow Univ. Phys. 78, 14–20 (2023). https://doi.org/10.3103/S0027134923010149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134923010149

Keywords:

Navigation