Skip to main content
Log in

Sensitivity of \(\boldsymbol{r}\) Process Calculation to the Choice of a Mass Model of Atomic Nuclei: Comparison of the FRDM, HFB-24, WS+RBF, and LMR Models

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The influence of the choice of nuclear mass model used in the calculation of the astrophysical rates of neutron capture reactions using a statistical approach on the result of the nucleosynthesis \(r\) process simulation has been studied. Four nuclear mass models (FRDM model, macro-microscopic WS+RBF model, microscopic HFB-24 model, and the method of local mass relations (LMR model)) are considered. Nuclear mass uncertainties significantly affect the cross sections and rates of radiative neutron capture. Reaction databases in the REACLIB format are constructed on the basis of the considered mass models. The yield of \(r\) process products under standard conditions is calculated using the reaction databases in the REACLIB format. The use of the LMR model leads to a significant increase in the yield of heavy nuclei in the mass number range of \(170\leqslant A\leqslant 190\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).

    Article  ADS  Google Scholar 

  2. A. Sobiczewski, Yu. A. Litvinov, and M. Palczewski, At. Data Nucl. Data Tables 119, 1 (2018).

    Article  ADS  Google Scholar 

  3. J. Lippuner and L. F. Roberts, Astrophys. J. Suppl. Ser. 233, 18 (2017).

    Article  ADS  Google Scholar 

  4. C. Alappat, G. Hager, O. Schenk, et al., ACM Trans. Par. Comp. 7, 1 (2020).

    Article  Google Scholar 

  5. R. H. Cyburt, A. M. Amthor, R. Ferguson, et al., Astrophys. J. Suppl. Ser. 189, 240 (2010).

    Article  ADS  Google Scholar 

  6. A. Koning, D. Rochman, J.-C. Sublet, et al., Nucl. Data Sheets 155, 1 (2019).

    Article  ADS  Google Scholar 

  7. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016).

    Article  ADS  Google Scholar 

  8. N.-N. Ma, H.-F. Zhang, X.-J. Bao, and H.-F. Zhang, Chin. Phys. C 43, 044105 (2019).

    Article  ADS  Google Scholar 

  9. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88, 024308 (2013).

    Article  ADS  Google Scholar 

  10. J. Jänecke and H. Behrens, Phys. Rev. C 9, 1276 (1974).

    Article  ADS  Google Scholar 

  11. M. Wang, G. Audi, F. G. Kondev, et al., Chin. Phys. C 41, 030002 (2017).

    Article  Google Scholar 

  12. G. T. Garvey and I. Kelson, Phys. Rev. Lett. 16, 197 (1966).

    Article  ADS  Google Scholar 

  13. D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).

    Article  ADS  Google Scholar 

  14. V. A. Kravtsov, J. Exp. Theor. Phys. 36, 871 (1966).

    Google Scholar 

  15. B. S. Ishkhanov, S. V. Sidorov, T. Y. Tretyakova, and E. V. Vladimirova, Chin. Phys. C 43, 014104 (2019).

    Article  ADS  Google Scholar 

  16. E. V. Vladimirova, M. V. Simonov, and T. Y. Tre- tyakova, AIP Conf. Proc. 2377, 070003 (2021).

    Article  Google Scholar 

  17. D. P. Wagner, M. A. Bentley, and P. van Isaker, Nat. Phys. 2, 311 (2006).

    Article  Google Scholar 

  18. W. Huang, M. Wang, F. Kondev, et al., Chin. Phys. C 45, 030002 (2021).

    Article  ADS  Google Scholar 

  19. E. V. Vladimirova, B. S. Ishkhanov, M. V. Simonov, and T. Yu. Tret’yakova, Uch. Zap. Mosk. Fiz. Fak. 3, 1930409 (2019).

    Google Scholar 

  20. Z. Wu, S. A. Changizi, and C. Qi, Phys. Rev. C 93, 034334 (2016).

    Article  ADS  Google Scholar 

  21. K. Lodders, Astrophys. J. 591, 1220 (2003).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Interdisciplinary Scientific and Educational School of Moscow State University ‘‘Fundamental and Applied Space Research.’’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Negrebetskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negrebetskiy, V.V., Simonov, M.V., Vladimirova, E.V. et al. Sensitivity of \(\boldsymbol{r}\) Process Calculation to the Choice of a Mass Model of Atomic Nuclei: Comparison of the FRDM, HFB-24, WS+RBF, and LMR Models. Moscow Univ. Phys. 77, 43–49 (2022). https://doi.org/10.3103/S0027134922010271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134922010271

Keywords:

Navigation