Skip to main content
Log in

The Effect of Ion Irradiation Fluence on the Structure of Multiwall Carbon Nanotubes with Different Diameters

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Multiwall carbon nanotubes (MWCNTs) with different initial diameters have been irradiated with accelerated He\({}^{+}\) ions in the fluence range from \(2.5\times 10^{15}\) to \(3\times 10^{16}\) ion/cm\({}^{2}\). Raman scattering showed that the number of defects and amorphicity of MWCNTs rapidly increase with increasing fluence. The change in the mean diameter of MWCNTs depending on the irradiation fluence is shown. The change in the nature of this dependence for different initial diameters of the nanotubes is discussed. Sputtering of nanotubes has been simulated. It is shown that the value of the sputtering yield is in good agreement with the experimentally measured values of the mean diameter of the nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. L. Kurpaska, J. Jagielski, J. Jasisski, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 466, 76 (2020). https://doi.org/10.1016/j.nimb.2020.01.013

    Article  Google Scholar 

  2. A. M. Borisov, V. A. Kazakov, E. S. Mashkova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 406, 676 (2017). https://doi.org/10.1016/j.nimb.2017.01.075

    Article  Google Scholar 

  3. A. V. Kozhemiako, A. P. Evseev, Y. M. Spivak, et al., Semiconductors 75, 465 (2020). https://doi.org/10.3103/S0027134920050161

    Article  Google Scholar 

  4. A. P. Evseev, A. V. Kozhemiako, Y. V. Kargina, et al., Radiat. Phys. Chem. 176, 109061 (2020). https://doi.org/10.1016/j.radphyschem.2020.109061

    Article  Google Scholar 

  5. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science (Washington, DC, U. S.) 297, 78 (2002). https://doi.org/10.1126/science.1060928

    Article  Google Scholar 

  6. M. Sirvits, J. Keinonen, A. V. Krasheninnikov, et al., Phys. Rev. B 63 (2001). https://doi.org/10.1103/PhysRevB.63.245405

  7. K. D. Kushkina, A. A. Shemukhin, E. A. Vorobyeva, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 430, 11 (2018). https://doi.org/10.1016/j.nimb.2018.05.038

    Article  Google Scholar 

  8. K. R. Pyun and S. H. Ko, Mater. Today Energy 12, 431 (2019). https://doi.org/10.1016/j.mtener.2019.04.008

    Article  Google Scholar 

  9. A. I. Morkovkin, E. A. Vorobyeva, A. P. Evseev, et al., Semiconductors 53, 1683 (2019). https://doi.org/10.1134/S1063782619160188

    Article  ADS  Google Scholar 

  10. S. Yeo, C. Y. Lee, D. S. Kim, et al., Thin Solid Films 677, 73 (2019). https://doi.org/10.1016/j.tsf.2019.03.026

    Article  ADS  Google Scholar 

  11. E. A. Vorobyeva, A. P. Evseev, V. L. Petrov, et al., Mosc. Univ. Phys. Bull. 76, 29–35 (2021). http://dx.doi.org/10.3103/s0027134921010112

    Article  ADS  Google Scholar 

  12. K. P. Sarath, K. Jayanarayanan, and M. Balachandran, Mater. Today Proc. 24, 1157 (2020). https://doi.org/10.1016/j.matpr.2020.04.429

    Article  Google Scholar 

  13. F. Fornasiero, M. Leblanc, S. Charnvanichborikarn, et al., Carbon 99, 491 (2016). https://doi.org/10.1016/j.carbon.2015.12.042

    Article  Google Scholar 

  14. A. A. Shemukhin, Y. V. Balaskshin, A. P. Evseev, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017). https://doi.org/10.1016/j.nimb.2017.04.055

    Article  Google Scholar 

  15. Y. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1861 (2018). https://doi.org/10.1134/s106378421812023x

    Article  Google Scholar 

  16. Z. Wang, L. Yu, W. Zhang, et al., Phys. Lett. A 324, 321 (2004). https://doi.org/10.1016/j.physleta.2004.02.001

    Article  ADS  Google Scholar 

  17. Y. Lin, A. Dichiara, D. He, et al., Phys. Lett. 554, 137 (2012). https://doi.org/10.1016/j.cplett.2012.10.028

    Article  Google Scholar 

  18. S. Osswald, M. Havel, and Y. J. Gogotsi, Raman Spectrosc. 38, 728 (2007). https://doi.org/10.1002/jrs.1686

    Article  ADS  Google Scholar 

  19. H. M. Kim, H. S. Kim, S. K. Park, et al., J. Appl. Phys. 97, 026103 (2005). https://doi.org/10.1063/1.1834721

    Article  ADS  Google Scholar 

  20. Y. Yamamura and H. Tawara, At. Data Nucl. Data Tables 62, 149 (1996). https://doi.org/10.1006/adnd.1996.0005

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-72-10118). A. P. Evseev is a scholar of the BASIS Theoretical Physics and Mathematics Advancement Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Evseev.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evseev, A.P., Balakshin, Y.V., Vorobyeva, E.A. et al. The Effect of Ion Irradiation Fluence on the Structure of Multiwall Carbon Nanotubes with Different Diameters. Moscow Univ. Phys. 76, 84–88 (2021). https://doi.org/10.3103/S0027134921020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134921020041

Keywords:

Navigation