Skip to main content
Log in

A Sensor System Based on a Field-Effect Transistor with a Nanowire Channel for the Quantitative Determination of Thyroid-Stimulating Hormone

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Here we present an original CMOS compatible technique for fabrication a sensor system based on field-effect transistors with a nanowire channel and its application for the quantitative determination of thyroid-stimulating hormone (TSH) in model blood serum. The fabrication process is based on the reactive-ion etching of the upper layer of silicon on insulator through a mask formed by electron beam lithography. The detection is based on the registration the change in the conductivity of the transistor during the selective interaction of the analyte with specific biomolecules on its surface. There were fabricated field-effect transistors with a nanowire channel of \(70{-}90\text{nm}\) wide and \(3{-}5 \mu\text{m}\) in long and a contact leads completely insulated from the analyte fluid. As the model antigen protein TSH of the pituitary gland, and as the recognition biomolecules - the specific to TSH fragments of antibodies were used, which were oriented immobilized on the nanowires surface. We carefully studied the conditions for biospecific interaction of antibodies with TSH. The detection limit of TSH was found to be \(1\times 10^{-4}\mu\text{IU}/\text{mL}\), which is significantly lower in comparison with currently used methods of standard enzyme-linked immunosorbent assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. J. Salfi, I. G. Savelyev, M. Blumin, et al., Nat. Nanotechnol. 5, 737 (2010). https://doi.org/10.1038/nnano.2010.180

    Article  ADS  Google Scholar 

  2. N. Clement, K. Nishiguchi, J. F. Dufreche, et al., Appl. Phys. Lett. 98, 014104 (2011). https://doi.org/10.1063/1.3535958

    Article  ADS  Google Scholar 

  3. J. Choi, T. W. Seong, M. Jeun, and K. H. Lee, Adv. Healthcare Mater. 6, 1700796 (2017). https://doi.org/10.1002/adhm.201700796

    Article  Google Scholar 

  4. K. Shin, D. s. Kang, S. H. Lee, and W. Moon, Ultramicroscopy 159, 1 (2015). https://doi.org/10.1016/j.ultramic.2015.07.007

    Article  Google Scholar 

  5. Q. Qing, Z. Jiang, L. Xu, et al., Nat. Nanotechnol. 9, 142 (2014). http://doi.org/10.1038/nnano.2013.273

    Article  ADS  Google Scholar 

  6. A. S. Trifonov, D. E. Presnov, I. V. Bozhev, et al., Ultramicroscopy 179, 33 (2017). https://doi.org/10.1016/j.ultramic.2017.03.030

    Article  Google Scholar 

  7. D. Zhang, Z. Liu, C. Li, et al., Nano Lett. 4, 1919 (2004). https://doi.org/10.1021/nl0489283

    Article  ADS  Google Scholar 

  8. Z. Fan and J. G. Lu, Appl. Phys. Lett. 86, 123510 (2005). https://doi.org/10.1063/1.1883715

    Article  ADS  Google Scholar 

  9. J. Hahm and C. M. Lieber, Nano Lett. 4, 51 (2004). https://doi.org/10.1021/nl034853b

    Article  ADS  Google Scholar 

  10. F. N. Ishikawa, H.-K. Chang, M. Curreli, et al., ACS Nano 3, 1219 (2009). https://doi.org/10.1021/nn900086c

    Article  Google Scholar 

  11. F. Patolsky, G. Zheng, O. Hayden, et al., Proc. Natl. Acad. Sci. U. S. A. 101, 14017 (2004). https://doi.org/10.1073/pnas.0406159101

    Article  ADS  Google Scholar 

  12. N. Nekrasov, D. Kireev, A. Emelianov, and I. Bobrinetskiy, Toxins 11, 550 (2019). http://doi.org/10.3390/toxins11100550

    Article  Google Scholar 

  13. H. Xie, Y.-T. Li, Y.-M. Lei, et al., ACS Anal. Chem. 88, 11115 (2016). https://doi.org/10.1021/acs.analchem.6b03208

    Article  Google Scholar 

  14. S. Wei, C. Ge, L. Zhou, et al., ACS Appl. Electron. Mater. Interfaces 1, 2380 (2019). http://doi.org/10.1021/acsaelm.9b00550

    Article  Google Scholar 

  15. M. Randle, A. Lipatov, A. Kumar, et al., ACS Nano 13, 803 (2018). http://doi.org/10.1021/acsnano.8b08260

    Article  Google Scholar 

  16. X. Chen, S. Hao, B. Zong, et al., Biosens. Bioelectron. 145, 111711 (2019). http://doi.org/10.1016/j.bios.2019.111711

    Article  Google Scholar 

  17. G. Presnova, D. Presnov, V. Krupenin, et al., Biosens. Bioelectron. 88, 283 (2017). https://doi.org/10.1016/j.bios.2016.08.054

    Article  Google Scholar 

  18. M. Rubtsova, G. Presnova, D. Presnov, et al., Proc. Technol. 27, 234 (2017). https://doi.org/10.1016/j.protcy.2017.04.099

    Article  Google Scholar 

  19. V. P. Popov, M. A. Ilnitskii, E. D. Zhanaev, et al., Semiconductors 50, 632 (2016). http://doi.org/10.1134/S1063782616050195

    Article  ADS  Google Scholar 

  20. S. M. Koo, M. D. Edelstein, Q. Li, et al., Nanotechnology 16, 1482 (2005). http://doi.org/10.1088/0957-4484/16/9/011

    Article  Google Scholar 

  21. D. E. Presnov, S. V. Amitonov, P. A. Krutitskii, et al., Beilstein J. Nanotechnol. 4, 330 (2013). http://doi.org/10.3762/bjnano.4.38

    Article  Google Scholar 

  22. L. Syedmoradi, A. Ahmadi, M. L. Norton, and K. Omidfar, Microchim. Acta 186, 739 (2019). http://doi.org/10.1007/s00604-019-3850-6

    Article  Google Scholar 

  23. M. Crescentini, M. Rossi, P. Ashburn, et al., Biosensors 6 (2), 15 (2016). http://doi.org/10.3390/bios6020015

    Article  Google Scholar 

  24. L. Zhou, K. Wang, H. Sun, et al., Nano-Micro Lett. 11, 20 (2019). http://doi.org/10.1007/s40820-019-0250-8

    Article  ADS  Google Scholar 

  25. A. Nehra and P. S. Krishna, Biosens. Bioelectron. 74, 731 (2015). http://doi.org/10.1016/j.bios.2015.07.030

    Article  Google Scholar 

  26. X. Huang, R. O’Connor, E. A. Kwizera, Nanotheranostics 1, 80 (2017). http://doi.org/10.7150/ntno.18216

    Article  Google Scholar 

  27. G.-S. Park, H. Kwon, D. W. Kwak, et al., Nano Lett. 12, 1638 (2012). http://doi.org/10.1021/nl2045759

    Article  ADS  Google Scholar 

  28. A. Convertino, V. Mussi, and L. Maiolo, Sci. Rep. 6, 25099 (2016). http://doi.org/10.1038/srep25099

    Article  ADS  Google Scholar 

  29. X. Li, B. Chen, M. He, et al., Biosens. Bioelectron. 90, 343 (2017). http://doi.org/10.1016/j.bios.2016.11.030

    Article  Google Scholar 

  30. V. P. Popov, A. V. Tronin, A. V. Glukhov, Yu. D. Ivanov, Innovatsii 185 (3), 94 (2014). https:// maginnov.ru/ru/zhurnal/arhiv/2014/innovacii-n3-2014/elektronnye-biohimicheskie-nanosensory-dlya-klinicheskih-issledovanij-obzornaya-statya.

  31. S. LaFranchi, Sci. Rep. 4, 477 (1994). http://doi.org/10.1097/00019616-199411000-00010

    Article  Google Scholar 

  32. U. Azmat, K. Porter, L. Senter, et al., Thyroid 27, 74 (2017). http://doi.org/10.1089/thy.2016.0210

    Article  Google Scholar 

  33. B. Jain, J. Kumarasamy, C. Gholve, et al., Indian J. Clin. Biochem. 32, 193 (2017).

    Article  Google Scholar 

  34. T. Zhao, J. Liang, T. Li, et al., Chin. J. Cancer Res. 29, 213 (2017). http://doi.org/10.21147/j.issn.1000-9604.2017.03.07

    Article  Google Scholar 

  35. D. E. Presnov, I. V. Bozhev, A. V. Miakonkikh, et al., J. Appl. Phys. 123, 054503 (2018). http://doi.org/10.1063/1.5019250

    Article  ADS  Google Scholar 

  36. G. V. Presnova, I. I. Tcinyaykin, I. V. Bozhev, et al., Proc. SPIE 11022, 110220Z (2019). http://dx.doi.org/10.1117/12.2522461

    Article  Google Scholar 

  37. K. F. Schuegraf and H. Chenming, Semicond. Sci. Technol. 9, 989 (1994). http://doi.org/10.1088-1242

    Article  ADS  Google Scholar 

  38. B. J. O’Sullivan, T. Bearda, S. Nadupalli, et al., IEEE J. Photovolt. 4, 1197 (2014). http://doi.org/10.1109/JPHOTOV.2014.2326711

    Article  Google Scholar 

  39. V. A. Bogatyrev, L. A. Dykman, and S. Yu. Shchegolev, RF Patent No. RU2013374C1 1994). https://patenton.ru/patent/RU2013374C1/en

  40. U. K. Laemmli, Nature (London, U.K.) 227 (5259), 680 (1970). https://doi.org/10.1038/227680a0

    Article  ADS  Google Scholar 

  41. I. Park, Z. Li, A. P. Pisano, and R. S. Williams, Nano Lett. 7, 3106 (2007). https://doi.org/10.1021/nl071637k

    Article  ADS  Google Scholar 

  42. G. Choi, E. Kim, E. Park, and J. H. Lee, Talanta 162, 38 (2017). http://doi.org/10.1016/j.talanta.2016.09.061

    Article  Google Scholar 

  43. Y. Cui, H. Chen, L. Hou, et al., Talanta 738, 76 (2012). http://doi.org/10.1016/j.aca.2012.06.013

    Article  Google Scholar 

  44. M. H. Shamsi, K. Choi, A. H. Ng, and A. R. Wheeler, Lab Chip. 14, 547 (2014). http://doi.org/10.1039/c3lc51063h

    Article  Google Scholar 

  45. G. V. Presnova, D. E. Presnov, V. A. Krupenin, et al., Mosc. Univ. Chem. Bull. 73, 173 (2018). http://doi.org/10.3103/S0027131418040089

    Article  Google Scholar 

  46. K. Maehashi, T. Katsura, K. Kerman, et al., Anal. Chem. 79, 782 (2007). http://doi.org/10.1021/ac060830g

    Article  Google Scholar 

  47. E. Stern, R. Wagner, A. H. Ng, et al., Nano Lett. 7, 3405 (2007). http://doi.org/10.1021/nl071792z

    Article  ADS  Google Scholar 

  48. K. Kim, C. Park, D. Kwon, et al., Biosens. Bioelectron. 77, 695 (2016). http://doi.org/10.1016/j.bios.2015.10.008

    Article  Google Scholar 

  49. B. A. Keel, R. L. Harms, and S. M. Amir, Endocrine Res. 16, 151 (1990). http://doi.org/10.1080/07435809009032996

    Article  Google Scholar 

  50. G. Medri, I. Sergi, M.-J. Papandreou, et al., J. Mol. Endocrinol. 13, 187 (1994). http://doi.org/10.1677/jme.0.0130187

    Article  Google Scholar 

  51. M. A. Seia, S. V. Pereira, M. A. Fernández-Baldo, et al., Anal. Bioanal. Chem. 406, 4677 (2014). http://doi.org/10.1007/s00216-014-7882-9

    Article  Google Scholar 

  52. Y. Liu, Q. Zhang, H. Wang, et al., Biosens. Bioelectron. 71, 164 (2015). http://doi.org/10.1016/j.bios.2015.04.022

    Article  Google Scholar 

  53. J. E. Abud, C. G. Santamaría, E. H. Luque, and H. A. Rodriguez, Anal. Biochem. 539, 134 (2017). http://doi.org/10.1016/j.talanta.2017.05.007

    Article  Google Scholar 

  54. C. Shim, R. Chong, and J. H. Lee, Talanta 171, 229 (2017). http://doi.org/10.1039/c3lc51063h

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Equipment of the Educational and Methodological Center for Lithography and Microscopy (Moscow State University) was used in this work. This research was performed according to the Development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University ‘‘Photonic and quantum technologies. Digital medicine’’. Tsiniaikin  I. I. thanks the BASIS Foundation for the Advancement of Theoretical Physics and Mathematics.

Funding

This work was supported by the Russian Science Foundation, project no. 16-12-00072.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. I. Tsiniaikin or D. E. Presnov.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiniaikin, I.I., Presnova, G.V., Bozhev, I.V. et al. A Sensor System Based on a Field-Effect Transistor with a Nanowire Channel for the Quantitative Determination of Thyroid-Stimulating Hormone. Moscow Univ. Phys. 75, 645–656 (2020). https://doi.org/10.3103/S002713492006020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713492006020X

Keywords:

Navigation