Skip to main content
Log in

A Non-Gibbs Distribution in the Ising Model

  • Published:
Moscow University Physics Bulletin Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This work is in line with new approaches for obtaining and studying non-Gibbs equilibrium distributions. Based on the Ising model, a new equilibrium distribution is obtained for the case of a thermostat that is commensurate with the system. It is also shown that the equilibrium distribution significantly deviates from the Gibbs distribution when the thermostat is smaller or commensurate with a separated system and tends to the Gibbs distribution in the limit of a large thermostat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. I. A. Kvasnikov, Thermodynamics and Statistical Physics, Vol. 2: Theory of Equilibrium Systems (URSS, Moscow, 2002) [in Russian].

  2. R. Feinman, Statistical Mechanics (Benjamin, Massachusetts, 1972).

    Google Scholar 

  3. L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1980).

  4. J. W. Gibbs, Elementary Principles of Statistical Mechanics (Ox Bow Press, Woodbridge, 1981).

    MATH  Google Scholar 

  5. N. N. Bogolyubov, Selected Works, in 3 Volumes (Naukova Dumka, Kiev, 1970), Vol. 2, p. 297 [in Russian].

    MATH  Google Scholar 

  6. V. V. Kozlov, Poincaré and Gibbs Thermal Equilibrium (Moscow, 2002), p. 38 [in Russian].

    MATH  Google Scholar 

  7. E. W. Montroll and M. F. Shlesinger, J. Stat. Phys. 32, 209 (1983).

    Article  ADS  Google Scholar 

  8. P. Bak, How Nature Works. The Science of Self-Organized Criticality (Springer, Berlin, 1996).

    MATH  Google Scholar 

  9. A. Renyi, Probability Theory (North-Holland, Amsterdam, 1970).

    MATH  Google Scholar 

  10. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  11. A. G. Bashkirov and A. D. Sukhanov, J. Exp. Theor. Phys. 95, 440 (2002).

    Article  ADS  Google Scholar 

  12. G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000).

    Article  ADS  Google Scholar 

  13. C. Beck and E. G. D. Cohen, Phys. A (Amsterdam, Neth.) 322, 267–275 (2003).

  14. D. Ramshaw John, Phys. Rev. E 98, 020103(R) (2018).

  15. H. Hasegawa, Phys. Rev. E 83, 021104 (2011).

    Article  ADS  Google Scholar 

  16. E. Ising, ‘‘Beitrag zur Theorie des Ferro- und Paramagnetismus,’’ Ph. D. Thesis (Univ. of Hamburg, 1924).

  17. E. Ising, ‘‘Beitrag zur Theorie des Ferromagnetismus,’’ Z. Phys. 31, 253 (1925).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Koval or A. M. Savchenko.

Additional information

Translated by E. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilin, P.K., Koval, G.V. & Savchenko, A.M. A Non-Gibbs Distribution in the Ising Model. Moscow Univ. Phys. 75, 415–419 (2020). https://doi.org/10.3103/S0027134920050148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920050148

Keywords:

Navigation