Skip to main content
Log in

The Entropy of a Gravitating Body

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

This paper proposes a generalization of the dependence for the entropy of ‘‘ordinary’’ massive bodies with a relatively small entropy of the event horizon of the covering surface to the case of black holes (BH). By doing this, the nature of the famous Bekenstein bound, that is, the universal limit for entropy, is immediately explained and corrections to the values of the ‘‘gravitational’’ surface temperature are determined for the entire spectrum of astrophysical objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. Thorn, Black Holes and Time Warps: Einstein’s Outrageous Legacy (W. W. Norton, New York, 1994), p. 619.

    Google Scholar 

  2. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  3. B. Ya. Zel’dovich, Sov. Phys. JETP 35, 1085 (1972).

    ADS  Google Scholar 

  4. J. M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973);

    Article  ADS  Google Scholar 

  5. J. M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973); S. W. Hawking, Nature (London, U.K.) 248, 30 (1974).

    Article  ADS  Google Scholar 

  6. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  ADS  Google Scholar 

  7. J. D. Bekenstein, Contemp. Phys. 45, 31 (2003).

    Article  ADS  Google Scholar 

  8. J. D. Bekenstein, Lett. Nuovo Cim. 4, 737 (1972).

    Article  ADS  Google Scholar 

  9. J. W. Gibbs, Elementary Principles of Statistical Mechanics (Ox Bow Press, Woodbridge, 1981).

    MATH  Google Scholar 

  10. Ya. M. Gelfer, History and Methodology of Thermodynamics and Statistical Physics, 2nd ed. (Vysshaya Shkola, Moscow, 1981) [in Russian].

    Google Scholar 

  11. Ya. M. Gelfer, V. L. Lyuboshits, and M. I. Podgoretskii, Gibbs Paradox and Identity of Particles in Quantum Mechanics (Nauka, Moscow, 1975), p. 272 [in Russian].

    Google Scholar 

  12. D. V. Sivukhin, General Course of Physics (Nauka, Moscow, 1990), Vol. 2, p. 591 [in Russian].

    Google Scholar 

  13. E. P. Verlinde, High Energ. Phys., No. 04, 029 (2011). https://doi.org/10.1007/JHEP04(2011)029

  14. Yun Soo Myung, Hyung Won Lee, and Yong-Wan Kim, ‘‘Entropic force versus temperature force,’’ arXiv:1006.1922v1 [hep-th] (2010).

  15. F. Porcelli and G. Scibona, ‘‘On the black hole’s thermodynamics and the entropic origin of gravity,’’ arXiv: 1011.0895.

  16. I. Newton, Philosophiae Naturalis Principia Mathematica (Imprimatur, S. Pepys, London, 1686), Theorem XXXI.

  17. I. D. Novikov and V. P. Frolov, Physics of Black Holes (Nauka, Moscow, 1986), p. 328 [in Russian].

    Google Scholar 

  18. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    Article  ADS  Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belinsky.

Additional information

Translated by L. Trubitsyna

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belinsky, A.V., Shulman, M.H. The Entropy of a Gravitating Body. Moscow Univ. Phys. 75, 496–500 (2020). https://doi.org/10.3103/S0027134920050070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920050070

Keywords:

Navigation