Skip to main content
Log in

Unusual Dielectric Properties of Electrochromic Polydipyridinium Triflate Composites with Carbon Nanotubes

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The dielectric properties of electrochromic composite material based on poly[4,4’-(1,4-phenylene)bis(2,6-diphenylpyridinium)triflate] (PV) and multi-wall carbon nanotubes (MWCNTs) have been studied. Negative permittivity was registered at low frequencies of the alternating electric field (\(10^{-1}{-}10^{3}\) Hz) in the PV/MWCNT nanocomposites of different composition. The frequency of transition from negative to positive permittivity, as well as the values of conductivity, increased in the case of application of direct-current (dc) voltage. The physical mechanism responsible for the unusual properties appears to be related to the delocalized charges located at the multiple insulator–conductor interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Q. M. Zhang, H. F. Li, M. Poh, et al., Nature (London, U.K.)419, 284 (2002).

    Article  ADS  Google Scholar 

  2. C. Huang, R. Klein, F. Xia, et al., IEEE Trans. Dielectr. Electric. Insul. 11, 299 (2004).

    Article  Google Scholar 

  3. Y. Liu and S. Kumar, ACS Appl. Mater. Interfaces 6, 6069 (2014).

    Article  Google Scholar 

  4. A. Saha, C. Jiang, and A. A. Marti, Carbon 79, 1 (2014).

    Article  Google Scholar 

  5. X. Wang, E. N. Kalali, J.-T. Wan, and D.-Y. Wang, Prog. Polym. Sci. 69, 22 (2017).

    Article  Google Scholar 

  6. M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science (Washington, DC, U. S.) 339 (6119), 535 (2013).

    Article  ADS  Google Scholar 

  7. N. G. Sahoo, S. Rana, J. W. Cho, et al., Prog. Polym. Sci. 35, 837 (2010).

    Article  Google Scholar 

  8. J. E. Fischer, H. Dai, A. Thess, et al., Phys. Rev. B 55, R4921 (1997).

    Article  ADS  Google Scholar 

  9. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Book  Google Scholar 

  10. S. Barrau, P. Demont, A. Peigney, et al., Macromolecules 36, 5187 (2003).

    Article  ADS  Google Scholar 

  11. R. Mortimer, Ann. Rev. Mater. Res. 41, 241 (2011).

    Article  ADS  Google Scholar 

  12. G. Blanchet, C. Fincher, and F. Gao, Appl. Phys. Lett. 82, 1290 (2003).

    Article  ADS  Google Scholar 

  13. S. Xiong, J. Wei, P. Jia, et al., ACS Appl. Mater. Interfaces 3, 782 (2011).

    Article  Google Scholar 

  14. J. Zhou and G. Lubineau, ACS Appl. Mater. Interfaces 5, 6189 (2013).

    Article  Google Scholar 

  15. J. Chen, H. Liu, W. Weimer, et al., J. Am. Chem. Soc. 124, 9034 (2002).

    Article  Google Scholar 

  16. R. Pichugov, E. Makhaeva, and M. Keshtov, Electrochim. Acta 260, 139 (2018).

    Article  Google Scholar 

  17. R. D. Pichugov, I. A. Malyshkina, and E. E. Makhaeva, J. Electroanal. Chem. 823, 601 (2018).

    Article  Google Scholar 

  18. F. Lin, S. Cheng, and F. Harris, Polymer 43, 3421 (2002).

    Article  Google Scholar 

  19. J. C. Dyre and T. B. Schrøder, Rev. Mod. Phys. 72 (3), 873 (2000).

    Article  ADS  Google Scholar 

  20. C. W. Chu, F. Chen, J. Shulman, et al., Proc. SPIE 5932, 59320X (2005).

    Article  ADS  Google Scholar 

  21. J. Valentine, Sh. Zhang, T. Zentgraf, et al., Nature (London, U.K.) 455, 376 (2008).

    Article  ADS  Google Scholar 

  22. B. Li, G. Sui, and W.-H. Zhong, Adv. Mater. 21, 4176 (2009).

    Article  Google Scholar 

  23. H. Gu, J. Guo, S. Wei, and Zh. Guo, J. Appl. Polym. Sci. 130, 2238 (2013).

    Article  Google Scholar 

  24. H. Gu, Y. Huang, X. Zhang, et al., Polymer 53, 801 (2012).

    Article  Google Scholar 

  25. Yi Zhen, J. Arredondo, and G.-L. Zhao, Open J. Org. Polym. Mater. 3 (4), 99 (2013).

    Article  Google Scholar 

  26. J. Zhu, S. Wei, J. Ryu, and Zh. Guo, J. Phys. Chem. C 115, 13215 (2011).

    Article  Google Scholar 

  27. J. Zhu, Z. Luo, S. Wu, et al., J. Mater. Chem. 22, 835 (2012).

    Article  Google Scholar 

  28. S. A. Ramakrishna, Rep. Progr. Phys. 68, 449 (2005).

    Article  ADS  Google Scholar 

  29. X. Kou, X. Yao, J. Qiu, Org. Electron. 38, 42 (2016).

    Article  Google Scholar 

  30. J. Zhu, S. Wei, L. Zhang, et al., J. Mater. Chem. 21, 342 (2011).

    Article  Google Scholar 

  31. H. Gu, J. Guo, S. Wei, and Z. Guo, J. Appl. Polym. Sci. 130, 2238 (2013).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-01019a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Malyshkina.

Additional information

Translated by E. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshkina, I.A., Makhaeva, E.E. & Pichugov, R.D. Unusual Dielectric Properties of Electrochromic Polydipyridinium Triflate Composites with Carbon Nanotubes. Moscow Univ. Phys. 75, 153–157 (2020). https://doi.org/10.3103/S0027134920020071

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920020071

Keywords:

Navigation