Skip to main content
Log in

A Method for Reconstructing the Potential Profile of Surfaces Coated with a Dielectric Layer

  • RADIOPHYSICS, ELECTRONICS, ACOUSTICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

We propose a method of signal amplification for the scanning probe microscope mode, in which the distribution of the surface potential of a sample is measured simultaneously with topography using a local probe based on a field-effect transistor with a nanowire channel. The application of a method is especially relevant in the study of the electric potential of the surface in the case when it is covered with a dielectric layer that strongly weakens the electric field of the detected electric charges. A key feature of the method is in additional coating the surface of the dielectric layer with thin film of chromium (\(R_{\textrm{square}}>10\) k\(\Omega\); a film thickness is \({\sim}7\) nm). This film consists of small conductive granules separated by tunnel barriers. It was experimentally shown on the fabricated test structures that a signal attenuated by a dielectric layer can be restored by \(70{-}80\%\). We estimated the sensitivity of transistors integrated into the probe of a scanning probe microscope in the range of \(2{-}5\) mV in single frequency band at a frequency of \(100\) Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. M. Nonnenmacher, M. P. oTBoyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 12, 2921 (1991). https://doi.org/10.1063/1.105227

    Article  ADS  Google Scholar 

  2. M. Ligowski, D. Moraru, M. Anwar, et al., Appl. Phys. Lett. 93, 142101 (2008). https://doi.org/10.1063/1.2992202

  3. C. C. Williams, W. P. Hough, and S. A. Rishton, Appl. Phys. Lett. 55, 203 (1989). https://doi.org/10.1063/1.102096

    Article  ADS  Google Scholar 

  4. J. R. Matey and J. Blanc, Appl. Phys. Lett. 57, 1437 (1985). https://doi.org/10.1063/1.334506

    Article  Google Scholar 

  5. H. Park, J. Jung, D. Min, et al., Appl. Phys. Lett. 84, 1734 (2004). https://doi.org/10.1063/1.1667266

    Article  ADS  Google Scholar 

  6. H. Ko, K. Ryu, H. Park, et al., Nano Lett. 11, 1428 (2011). https://doi.org/10.1021/nl103372a

    Article  ADS  Google Scholar 

  7. S. H. Lee, G. Lim, W. Moon, et al., Ultramicroscopy 108, 1094 (2008). https://doi.org/10.1016/j.ultramic.2008.04.034

    Article  Google Scholar 

  8. K. Shin, D. Kang, S. Lee, et al., Ultramicroscopy 159, 1 (2015). https://doi.org/10.1016/j.ultramic.2015.07.007

    Article  Google Scholar 

  9. H. T. Brenning, S. E. Kubatkin, D. Erts, et al., Nano Lett. 6, 937 (2006). https://doi.org/10.1021/nl052526t

    Article  ADS  Google Scholar 

  10. M. J. Yoo, T. A. Fulton, H. F. Hess, et al., Science (Washington, DC, U. S.) 276 (5312), 579 (1997). https://doi.org/10.1126/science.276.5312.579

    Article  Google Scholar 

  11. Mo Li, H. X. Tang, and M. L. Roukes, Nat. Nanotechnol. 2, 114 (2007). https://doi.org/10.1038/nnano.2006.208

    Article  ADS  Google Scholar 

  12. X. Cui, M. Freitag, R. Martel, et al., Nano Lett. 3, 783 (2003). https://doi.org/10.1021/nl034193a

    Article  ADS  Google Scholar 

  13. D. C. Coffey and D. C. Ginger, Nat. Mater. 5, 735 (2006). https://dx.doi.org/10.1038/nmat1712

    Article  ADS  Google Scholar 

  14. R. Borgani, D. Forchheimer, J. Bergqvist, et al., Appl. Phys. Lett. 105, 143113 (2014). https://doi.org/10.1063/1.4897966

  15. K. Maehashi, T. Katsura, K. Kerman, et al., Anal. Chem. 79, 782 (2007). https://doi.org/10.1021/ac060830g

    Article  Google Scholar 

  16. K. Chen, B. Li, and Y. Chen, Nano Today 6, 131 (2011). https://doi.org/10.1016/j.nantod.2011.02.001

    Article  Google Scholar 

  17. D. Kim, Y. Jeong, H. Park, et al., Biosens. Bioelectron. 20, 69 (2004). http://doi.org/10.1016/j.bios.2004.01.025a

  18. R. Yan, J. Park, Y. Choi, et al., Nat. Nanotechnol. 7, 191 (2012). https://doi.org/10.1038/nnano.2011.226

    Article  ADS  Google Scholar 

  19. Q. Qing, Z. Jiang, L. Xu, et al., Nat. Nanotechnol. 9, 142 (2014). https://doi.org/10.1038/nnano.2013.273

    Article  ADS  Google Scholar 

  20. G. Presnova, D. Presnov, V. Krupenin, et al., Biosens. Bioelectron. 88, 283–289 (2017). https://doi.org/10.1016/j.bios.2016.08.054

    Article  Google Scholar 

  21. M. Yu. Rubtsova, G. V. Presnova, V. A. Krupenin, et al., ‘‘Biosensors 2016,’’ Proc. Technol. 27, 234–235 (2016). https://doi.org/10.1016/j.protcy.2017.04.099

    Article  Google Scholar 

  22. V. A. Krupenin, D. E. Presnov, A. B. Zorin, et al., Phys. B (Amstedam, Neth.) 284, 1800 (2000). https://doi.org/10.1016/S0921-4526(99)02990-7

  23. V. V. Shorokhov, D. E. Presnov, S. V. Amitonov, et al., Nanoscale 9, 613–620 (2017). https://doi.org/10.1039/C6NR07258E

    Article  Google Scholar 

  24. S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, et al., Nanotechnology 28, 225304 (2017). https://doi.org/10.1088/1361-6528/aa6dea

  25. D. E. Presnov, S. A. Dagesyan, I. V. Bozhev, V. V.‘Shorokhov, A. S. Trifonov, A. A. Shemukhin, I. V. Sapkov, I. G. Prokhorova, O. V. Snigirev, and V. A. Krupenin, Mosc. Univ. Phys. Bull.74, 165 (2019). https://doi.org/10.3103/S0027134919020164

    Article  ADS  Google Scholar 

  26. J. E. Stern, B. D. Terris, H. J. Mamin, et al., Appl. Phys. Lett. 53, 2717 (1988). https://doi.org/10.1063/1.100162

    Article  ADS  Google Scholar 

  27. K. Domansky, Y. Leng, C. C. Williams, et al., Appl. Phys. Lett. 63, 1513 (1993). https://doi.org/10.1063/1.110759

    Article  ADS  Google Scholar 

  28. J. Salfi, I. Savelyev, M. Blumin, et al., Nat. Nanotechnol. 5, 737 (2010). https://doi.org/10.1038/nnano.2010.180

    Article  ADS  Google Scholar 

  29. D. E. Presnov, S. V. Amitonov, P. A. Krutitskii, et al., Beilstein J. Nanotechnol. 4, 330 (2013). https://doi.org/10.3762/bjnano.4.38

    Article  Google Scholar 

  30. A. S. Trifonov, D. E. Presnov, I. V. Bozhev, et al., Ultramicroscopy 179, 33–40 (2017). https://doi.org/10.1016/j.ultramic.2017.03.030

    Article  Google Scholar 

  31. D. E. Presnov, I. V. Bozhev, A. V. Miakonkikh, et al., J. Appl. Phys. 123, 054503 (2018). https://doi.org/10.1063/1.5019250

  32. D. E. Presnov, S. V. Amitonov, V. A. Krupenin, et al., Microelectronics 41, 310–313 (2012). https://doi.org/10.1134/S1063739712050034

    Article  Google Scholar 

  33. K. S. S. Harsha, Principles of Vapor Deposition of Thin Films (Elsevier, Great Britain, 2006), p. 400. http://dx.doi.org/10.1016/B978-0-08-044699-8.X5000-1

  34. V. A. Krupenin, V. O. Zalunin, and A. B. Zorin, Microelectron. Eng. 81, 217–221 (2005). http://dx.doi.org/10.1016/j.mee.2005.03.010

    Article  Google Scholar 

  35. V. A. Krupenin, A. B. Zorin, M. N. Savvateev, et al., J. Appl. Phys. 90, 2411–2415 (2001). http://dx.doi.org/10.1063/1.1389758

    Article  ADS  Google Scholar 

  36. V. A. Krupenin, A. B. Zorin, D. E. Presnov, M. N. Savvateev, and J. Niemeyer, Phys. Usp. 44, 113–116 (2001). http://dx.doi.org/10.1070/1063-7869/44/10S/S25

    Article  ADS  Google Scholar 

  37. N. Clement, K. Nishiguchi, J. F. Dufreche, et al., Appl. Phys. Lett. 98, 014104 (2011). http://dx.doi.org/10.1063/1.3535958

  38. J. Rychen, T. Ihn, P. Studerus, et al., Rev. Sci. Instrum. 70, 2765 (1999). https://doi.org/10.1063/1.1149842

    Article  ADS  Google Scholar 

  39. S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, E. S. Soldatov, A. S. Trifonov, V. A. Krupenin and O. V. Snigirev, Mosc. Univ. Phys. Bull. 72, 474–479 (2017). https://doi.org/10.3103/S0027134917050058

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Bozev I. V. thanks the BASIS Foundation for the Advancement of Theoretical Physics and Mathematics.

Funding

This work was supported by the Russian Science Foundation (project no. 16-12-00072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Bozhev or A. S. Trifonov.

Additional information

Translated by I. P Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhev, I.V., Trifonov, A.S., Presnov, D.E. et al. A Method for Reconstructing the Potential Profile of Surfaces Coated with a Dielectric Layer. Moscow Univ. Phys. 75, 70–75 (2020). https://doi.org/10.3103/S0027134920010063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920010063

Keywords:

Navigation