Skip to main content
Log in

E-Model α-Attractor on Brane from Planck Data and Reheating Temperature

  • Astronomy, Astrophysics, and Cosmology
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In inflation sdandard scenario with α-attractors E-model, the infaltionary parameters determine by the e-fold number N and by the parameter α. Therefore, we study this model in the framework of the Randall—Sundrum type-II braneworld (RSII). From the scalar curvature perturbation constrained by the recent observation values, and in the high-energy limit V ≫ λ, we can reduce the value range of the parameter α in order to render the inflationary parameters (ns, r, and \({{d{n_s}} \over {d\;\ln \;k}}\)) compatible with the latest Planck data. For the reheating epoch, we have computed and discussed the reheating temperature Trh for several parameters, and it is large Trh ~ 1013 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  2. N. Aghanim et al. (Planck Collab.), arXiv:1807.06209 [astro-ph.CO].

  3. A. Linde and D. Andrei, Rep. Prog. Phys. 47, 205 (1982).

    Google Scholar 

  4. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, 1990).

  5. A. Linde, in Inflationary Cosmology, Ed. by M. Lemoine, J. Martin, and P. Peter (Springer, 2007), p. 1.

  6. K. A. Olive, Phys Rep. 190, 307 (1990).

    Article  ADS  Google Scholar 

  7. D. S. Goldwirth, and T. Piran, Phys. Rep. 214, 223 (1992).

    Article  ADS  Google Scholar 

  8. X. Chen, Y. Wang, and Z. Z. Xianyu, J. High Energy Phys. 2016(08), 51 (2016).

    Article  Google Scholar 

  9. P. Brax, C. van de Bruck, and A. C. Davis, Rep. Prog. Phys. 67, 2183 (2004).

    Article  ADS  Google Scholar 

  10. P. Binetruy, C. Deffayet, and D. Langlois, Nucl. Phys. B 565, 269 (2000).

    Article  ADS  Google Scholar 

  11. R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 2013(07), 002 (2013).

    Article  Google Scholar 

  12. A. Buchel and A. Ghodsi, Phys. Rev. D 70, 126008 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  13. N. Sadeghnezhad, Phys. Lett. B 769, 134 (2017).

    Article  ADS  Google Scholar 

  14. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge Univ. Press, 2000).

  15. D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).

    Article  ADS  Google Scholar 

  16. S. Iso, K. Kohrin, and K. Shimada, Phys. Rev. D 91, 044006 (2015).

    Article  ADS  Google Scholar 

  17. C. P. Burgess, M. Cicoli, F. Quevedo, and M. Williams, J. Cosmol. Astropart. Phys. 2014(11), 045 (2014).

    Article  Google Scholar 

  18. R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 2013(06), 028 (2013).

    Article  Google Scholar 

  19. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  20. D. S. Salopek, J. R. Bond, and J. M. Bardeen, Phys. Rev. D 40, 1753 (1989).

    Article  ADS  Google Scholar 

  21. S. Ferrara, R. Kallosh, and A. Linde, J. High Energy Phys. 2014(10), 143 (2014).

    Article  ADS  Google Scholar 

  22. M. Shahalam, R. Myrzakulov, et al., Int. J. Mod. Phys. D 27, 1850058 (2018).

    Article  ADS  Google Scholar 

  23. A. Linde, J. Cosmol. Astropart. Phys. 2015(05), 003 (2015).

    Article  Google Scholar 

  24. K. Dimopoulos and C. Owen, J. Cosmol. Astropart. Phys. 2017(06), 027 (2017).

    Article  Google Scholar 

  25. Y. Shtanov, J. Traschen, and R. Brandenberger, Phys. Rev. D 51, 5438 (1995).

    Article  ADS  Google Scholar 

  26. O. Özsoy et al., Phys. Rev. D 96, 123524 (2017).

    Article  ADS  Google Scholar 

  27. L. Kofman, A. Linde, and A.A. Starobinsky, Phys. Rev. D 56, 3258 (1997).

    Article  ADS  Google Scholar 

  28. B. A. Bassett, S. Tsujikawa, and D. Wands, Rev. Mod. Phys. 78, 537 (2006).

    Article  ADS  Google Scholar 

  29. J. H. Traschen and R. H. Brandenberger, Phys. Rev. D 42, 2491 (1990).

    Article  ADS  Google Scholar 

  30. A. Monteux and C. S. Shin, Phys. Rev. D 92, 035002 (2015).

    Article  ADS  Google Scholar 

  31. P. F. De Salas et al., Phys. Rev. D 92, 123534 (2015).

    Article  ADS  Google Scholar 

  32. J. Mielczarek, Phys. Rev. D 83, 023502 (2011).

    Article  ADS  Google Scholar 

  33. T. Rehagen and G. B. Gelmini, J. Cosmol. Astropart. Phys. 2015(06), 039 (2015).

    Article  Google Scholar 

  34. M. J. Hayashi, Proc. 35th Int. Conf. on High Energy Physics, Paris, France, 2010, p. 13552.

  35. T. Co. Raymond, F. D’Eramoc, and J. H. Lawrence, J. High Energy Phys. 2017(03), 005 (2017).

    Article  Google Scholar 

  36. J. J. M. Carrasco, R. Kallosh, and A. Linde, Phys. Rev. D 92, 063519 (2015).

    Article  ADS  Google Scholar 

  37. Y. Ueno and K. Yamamoto, Phys. Rev. D 93, 083524 (2016).

    Article  ADS  Google Scholar 

  38. J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  39. L. Battarra and J. L. Lehners, Phys. Rev. D 89, 063516 (2014).

    Article  ADS  Google Scholar 

  40. S. Choudhury and P. Supratik, Phys. Rev. D 85, 043529 (2012).

    Article  ADS  Google Scholar 

  41. R. Herrera, arXiv:1901.04607[gr-qc].

  42. C. Campuzano, S. Del Campo, and R. Herrera, Phys. Rev. D 72, 083515 (2005).

    Article  ADS  Google Scholar 

  43. R. Herrera, Phys. Lett. B 664, 149 (2008).

    Article  ADS  Google Scholar 

  44. R. Maartens, D. Wands, B. Basset, and I. Heard, Phys. Rev. D 62, 041301 (2000).

    Article  ADS  Google Scholar 

  45. A. R. Liddle and D. H. Lyth, Phys. Lett. B 291, 391 (1992).

    Article  ADS  Google Scholar 

  46. D. Langlois, R. Maartens, and D. Wands, Phys. Lett. B 489, 259 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  47. R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 2013(12), 006 (2013).

    Article  Google Scholar 

  48. S. Ferrara, R. Kallosh, A. Linde, and M. Porrati, Phys. Rev. D 88, 085038 (2013).

    Article  ADS  Google Scholar 

  49. J. M. Carrasco, R. Kallosh, and A. Linde, Phys. Rev. D 93, 061301 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Galante, R. Kallosh, A. Linde, and D. Roest, Phys. Rev. Lett. 114, 141302 (2015).

    Article  ADS  Google Scholar 

  51. R. Kallosh, A. Linde, and D. Roest, J. High Energy Phys. 2013(11), 198 (2013).

    Article  ADS  Google Scholar 

  52. R. Kallosh and A. Linde, C. R. Phys. 16, 914 (2015).

    Article  ADS  Google Scholar 

  53. M. Ferricha-Alami, Z. Mounzi, O. Jdair, M. Naciri, M. Bennai, and H. Chakir, Moscow Univ. Phys. Bull. 72, 425 (2017).

    Article  ADS  Google Scholar 

  54. M. Ferricha-Alami, Z. Sakhi, H. Chakir, and M. Ben-nai, Eur. Phys. J. Plus 132, 303 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferricha-Alami.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamate, F., Khay, I., Ferricha-Alami, M. et al. E-Model α-Attractor on Brane from Planck Data and Reheating Temperature. Moscow Univ. Phys. 74, 537–543 (2019). https://doi.org/10.3103/S0027134919050114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919050114

Keywords

Navigation