Low-Frequency Ultrasonic Tomography: Mathematical Methods and Experimental Results

Abstract

This paper describes investigation of the possibilities of low-frequency ultrasonic tomography in medicine. The main application is the development of tomographic methods for differential diagnosis of breast cancer. To solve the inverse problem, a mathematical model is used that describes both the phenomena of diffraction and refraction and the absorption of ultrasound in an inhomogeneous medium. The algorithms developed for reconstructing the velocity structure were evaluated using the test bench for experimental studies. Broadband ultrasonic sources in the 50–600 kHz range were used for sounding. A Teledyne Reson TC4038 hydrophone with a sensitivity of approximately 4 µV/Pa and a frequency range of 10–800 kHz was used as a receiver. A Teledyne Reson VP1000 preamplifier was used to amplify the signals. The studies were carried out on phantoms with acoustic parameters close to the properties of human soft tissues. A layerwise model was used to reconstruct the three-dimensional velocity structure. The sound speed cross-sections reconstructed from the experimental data have a resolution of approximately 2 mm, while the central wavelength is approximately 4 mm. An important result of the work is an experimental confirmation of the correspondence of the model to physical processes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Goncharsky, S. Romanov, and S. Seryozhnikov, Ultrasonics 67, 136 (2016).

    Article  Google Scholar 

  2. 2.

    V. A. Burov, D. I. Zotov, and O. D. Rumyantseva, Acoust. Phys. 60, 479 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    V. A. Burov, D. I. Zotov, and O. D. Rumyantseva, Acoust. Phys. 61, 231 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    R. Jifik, I. Peterlik, N. Ruiter, et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control 59, 254 (2012).

    Article  Google Scholar 

  5. 5.

    N. V. Ruiter, M. Zapf, T. Hopp, et al., Proc. SPIE 10139, 101391N (2017).

    Article  Google Scholar 

  6. 6.

    S. Schmidt, N. Duric, C. Li, et al., Med. Phys. 38, 998 (2011).

    Article  Google Scholar 

  7. 7.

    J. W. Wiskin, D. T. Borup, E. Iuanow, et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control 64, 1161 (2017).

    Article  Google Scholar 

  8. 8.

    F. Natterer, in Tomography and Inverse Transport Theory, Ed. by G. Bal, D. Finch, P. Kuchment, J. Schotland, P. Stefanov, and G. Uhlmann (American Mathematical Society, 2011), p. 151.

  9. 9.

    F. Natterer, in Handbook of Mathematical Methods in Imaging, Ed. by O. Scherzer (Springer, 2015), p. 1253.

  10. 10.

    L. Beilina, M. V. Klibanov, and M. Yu. Kokurin, J. Math. Sci. 167, 279 (2010).

    MathSciNet  Article  Google Scholar 

  11. 11.

    A. Kuzhuget, L. Beilina, M. Klibanov, et al., Inverse Probl. 28, 095007 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    A. V. Goncharsky and S. Y. Romanov, Inverse Probl. 29, 075004 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    A. V. Goncharsky and S. Y. Romanov, Phys. Med Biol. 59, 1979 (2014).

    Article  Google Scholar 

  14. 14.

    C. Boehm, N. K. Martiartu, N. Vinard, et al., Proc. SPIE 10580, 105800H (2018).

    Google Scholar 

  15. 15.

    P. Yong, W. Liao, J. Huang, and Z. Li, Inverse Probl. 34, 045006 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, Dokl. Phys. 61, 211 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    M. W. Lenox, J. Wiskin, M. A. Lewis, et al., Int. J. Biomed. Imaging 2015, 454028 (2015).

    Article  Google Scholar 

  18. 18.

    A. V. Goncharsky and S. Y. Romanov, Inverse Probl. 33, 025003 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    B. Engquista and A. Majda, Math. Comput. 31, 629 (1977).

    ADS  Article  Google Scholar 

  20. 20.

    D. Givoli and J. B. Keller, Wave Motion 12, 261279 (1990).

    Article  Google Scholar 

  21. 21.

    S. Bilbao, Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics (Wiley, Chichester, 2009).

    Book  MATH  Google Scholar 

  22. 22.

    M. Fink, Contemp. Phys. 37, 95 (1996).

    ADS  Article  Google Scholar 

  23. 23.

    A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, Vychisl. Metody Program.: Nov. Vychisl. Tekhnol. 19, 150 (2018).

    Google Scholar 

  24. 24.

    A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Springer, 1995).

    Book  MATH  Google Scholar 

  25. 25.

    W. R. Hendee and E. R. Ritenour, Medical Imaging Physics (Wiley-Blackwell, 2002).

    Book  Google Scholar 

  26. 26.

    V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (CRC Press, 2013), p. 283.

    Google Scholar 

  27. 27.

    A. Goncharsky and S. Seryozhnikov, in Supercomputing. RuSCDays 2017, Moscow, Russia, Revised Selected Papers (Springer, 2017), p. 363.

    Google Scholar 

  28. 28.

    S. Romanov, in Supercomputing. RuSCDays 2017, Moscow, Russia, Revised Selected Papers (Springer, 2017), p. 67.

    Google Scholar 

  29. 29.

    A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, Vychisl. Metody Program.: Nov. Vychisl. Tekhnol. 18, 267 (2017).

    Google Scholar 

  30. 30.

    A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, Vychisl. Metody Program.: Nov. Vychisl. Tekhnol. 18, 312 (2017).

    Google Scholar 

  31. 31.

    E. Bazulin, A. Goncharsky, S. Romanov, and S. Seryozhnikov, Lobachevskii J. Math. 39, 486 (2018).

    MathSciNet  Article  Google Scholar 

  32. 32.

    A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, Wave Motion 51, 389 (2014).

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S.Y. Romanov.

Additional information

Russian Text © A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov, 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 1, pp. 40–47.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goncharsky, A.V., Romanov, S. & Seryozhnikov, S.Y. Low-Frequency Ultrasonic Tomography: Mathematical Methods and Experimental Results. Moscow Univ. Phys. 74, 43–51 (2019). https://doi.org/10.3103/S0027134919010090

Download citation

Keywords

  • ultrasonic tomography
  • wave equation
  • inverse problems
  • hydrophone
  • supercomputer technologies