Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 678–682 | Cite as

Improved Performance of Organic Star-Shaped Molecule Solar Cells with SiO2 Nanoparticles Embedded in a Buffer Layer

  • Yu. V. VladimirovaEmail author
  • A. L. Mannanov
  • V. N. Zadkov
  • F. Song


We have studied the effect of spherical SiO2 nanoparticles with sizes of 20, 50, and 80 nm embedded in a PEDOT : PSS buffer layer on the performance of organic solar cells (OSCs) based on star-shaped oligomers. The current–voltage characteristics and absorption spectra of samples have been measured and analyzed; the morphology of the buffer layer surface with embedded nanoparticles has been studied. It has been shown that an increase in the OSC performance occurs in the case of embedded nanoparticles with a diameter of 20 and 50 nm and weakly depends on the concentration of the nanoparticles in the layer.


organic solar cells star-shaped donor–acceptor oligomers SiO2 nanoparticles 



The study is funded by the Russian Foundation for Basic Research (grant nos. 16-02-00816 and 18-52- 53040).


  1. 1.
    G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, and A. Labouret, Mater. Res 20, 3224 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    G. J. Wang, T. G. Jiu, G. Tang, J. Li, P. D. Li, X. J. Song, F. S. Lu, and J. F. Fang, ACS Sustainable Chem. Eng. 2, 1331 (2014).CrossRefGoogle Scholar
  3. 3.
    P. Cheng, Y. F. Li, and X. W. Zhan, Energy Environ. Sci. 7, 2005 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Min, Yu. N. Luponosov, A. Gerl, et al., Adv. Energy Mater. 4, 1301234 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Min, Y. N. Luponosov, Z. Zhang, et al., Adv. Energy Mater. 4, 1400816 (2014).CrossRefGoogle Scholar
  6. 6.
    B. Paci, G. D. Spyropoulos, A. Generosi, D. Bailo, V. R. Albertini, E. Stratakis, and E. Kymakis, Adv. Funct. Mater. 21, 3573 (2011).CrossRefGoogle Scholar
  7. 7.
    F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, Appl. Phys. Lett. 99, 153304 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    H. C. Jiao, C. S. Tsao, T. H. Lin, M. H. Jao, C. M. Chuang, S. Y. Chang, Y. C. Huang, Y. T. Shao, C. Y. Chen, C. J. Su, U. S. Jeng, Y. F. Chen, and W. F. Su, ACS Nano 6, 1657 (2012).CrossRefGoogle Scholar
  9. 9.
    M. T. Khan, A. Kaur, S. K. Dhawan, and S. Chand, J. Appl. Phys. 110, 044509 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    G. Itkos, A. Othonos, T. Rauch, S. F. Tedde, O. Hayden, M. V. Kovalenko, W. Heiss, and S. A. Choulis, Adv. Energy Mater. 1, 802 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Q. Yun, W. Feng, H. C. Wu, and K. Yoshino, Sol. Energy Mater. Sol. Cells 93, 1208 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. Z. Lu, Y. B. Hou, Y. Wang, Z. H. Feng, X. J. Liu, and Y. W. Lu, Synth. Met. 161, 906 (2011).CrossRefGoogle Scholar
  13. 13.
    S. R. Gollu, R. Sharma, G. Srinivas, S. Kundu, and D. Gupta, Org. Electron. 15, 2518 (2014).CrossRefGoogle Scholar
  14. 14.
    S. H. Oh, S. J. Heo, J. S. Yang, and H. J. Kim, ACS Appl. Mater. Int. 5, 11530 (2013).CrossRefGoogle Scholar
  15. 15.
    S. R. Gollu, R. Sharma, G. Srinivas, S. Kundu, and D. Gupta, Org. Electron. 24, 43 (2015).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Yu. V. Vladimirova
    • 1
    • 2
    Email author
  • A. L. Mannanov
    • 1
  • V. N. Zadkov
    • 1
    • 2
    • 3
  • F. Song
    • 4
  1. 1.Department of Physics and International Laser Center, Moscow State UniversityMoscowRussia
  2. 2.Department of Physics, Higher School of EconomicsMoscowRussia
  3. 3.Institute of Spectroscopy, Russian Academy of SciencesTroitskMoscowRussia
  4. 4.College of Physical Sciences, Nankai UniversityTianjinP.R. China

Personalised recommendations