Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 573–578 | Cite as

Dislocation Motion in an Electric Field

  • N. Ed. SmirnovEmail author


An expression for the effective polarization electric charge per unit length of dislocation is obtained. It is shown that the polarization electric charge arises due to the interaction of an electric field only with the edge components of dislocations. An expression is obtained for the force that acts on a dislocation in the electric field and it is shown that the determining role in experiments would be played by the projection of this force onto the dislocation slip plane.


solid state dislocations electrodynamics 



The author is grateful to his colleagues of the Department of Theoretical Physics and to the participants of the workshop of the Department of Molecular Processes and Extreme Matter States of Moscow State University for discussions of the problems considered in this paper.


  1. 1.
    E. Kröner, in Physics of Defects, Les Houches Session XXXV (North-Holland, Amsterdam, 1981), p. 215.Google Scholar
  2. 2.
    A. Kadic and D. G. B. Edelen, A Gauge Theory of Dislocations and Disclinations (Springer, 1983).CrossRefzbMATHGoogle Scholar
  3. 3.
    R. Kupferman, M. Moshe, and J. P. Solomon, Arch. Ration. Mech. Anal. 216, 1009 (2015).MathSciNetCrossRefGoogle Scholar
  4. 4.
    K. Viswanathan and S. Chandrasekar, J. Appl. Phys. 116, 245103 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    F. Hehl and M. Lazar, Found. Phys. 40, 1298 (2010).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Deformation Levels of Solids (Nauka, Novosibirsk, 1985).zbMATHGoogle Scholar
  7. 7.
    N. A. Tyapunina and E. P. Belozerova, Sov. Phys. Usp. 31, 1060 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    D. B. Holt and B. G. Yacobi, Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures (Cambridge Univ. Press, 2007).CrossRefzbMATHGoogle Scholar
  9. 9.
    P. I. Pronin and N. Ed. Smirnov, Moscow Univ. Phys. Bull. 71, 155 (2016). doi 10.3103/S0027134916020089ADSCrossRefGoogle Scholar
  10. 10.
    P. I. Pronin and N. Ed. Smirnov, Moscow Univ. Phys. Bull. 71, 349 (2016). doi 10.3103/S0027134916040160ADSCrossRefGoogle Scholar
  11. 11.
    N. Ed. Smirnov and P. I. Pronin, Phys. Lett. A 382, 2245 (2018). 2017.09.015Google Scholar
  12. 12.
    S. R. De Groot and L. G. Suttorp, Foundations of Electrodynamics (North-Holland, Amsterdam, 1972).Google Scholar
  13. 13.
    F. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, Rev. Mod. Phys. 44, 393 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Mitskevich, Physical Fields in General Relativity (Nauka, Moscow, 1969).Google Scholar
  15. 15.
    P. I. Pronin and N. Ed. Smirnov, Preprint No. 4/1991 (Physical Faculty, Moscow State University, Moscow, 1991).Google Scholar
  16. 16.
    C. Teodosiu, Elastic Models of Crystal Defects (Springer, 1982).CrossRefzbMATHGoogle Scholar
  17. 17.
    J. Friedel, Dislocations (Pergamon, 1964).zbMATHGoogle Scholar
  18. 18.
    T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Springer, 1991).CrossRefGoogle Scholar
  19. 19.
    L. Colombo, T. Kataoka, and J. C. M. Li, Philos. Mag. Ser. A 46, 211 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    E. G. Shvedkovskii, N. A. Tyapunina, and E. P. Belozerova, Kristallografiya 7, 471 (1962).Google Scholar
  21. 21.
    R. W. Whithworth, Philos. Mag. 15, 305 (1967).ADSCrossRefGoogle Scholar
  22. 22.
    A. Tóth, T. Keszthelyi, and J. Sárkozi, Acta Phys. Hung. 49, 415 (1980).CrossRefGoogle Scholar
  23. 23.
    T. Kataoka, M. Sakomoto, and T. Yamada, Jpn. J. Appl. Phys. 14, 1609 (1975).ADSCrossRefGoogle Scholar
  24. 24.
    S. Brissenden, J. W. Gardner, J. Illingworth, I. Kova-ćević, and R. W. Whitworth, Phys. Status Solidi A 51, 521 (1979).ADSCrossRefGoogle Scholar
  25. 25.
    A. N. Kulichenko and B. I. Smirnov, Fiz. Tverd. Tela 25, 1523 (1983).Google Scholar
  26. 26.
    A. A. Urusovskaya, N. N. Bekkauer, and A. E. Smir-nova, Fiz. Tverd. Tela 33, 3169 (1991).Google Scholar
  27. 27.
    R. J. Schwensfeir and C. Elbaum, J. Phys. Chem. Solids 28, 597 (1967).ADSCrossRefGoogle Scholar
  28. 28.
    W. D. Kingery, J. Am. Ceram. Soc. 57, 1 (1974).CrossRefGoogle Scholar
  29. 29.
    L. V. Zuev, N. K. Doroshenko, Z. A. Maslovskaya, and R. F. Sharafutdinov, Fiz. Tverd. Tela 23, 1160 (1981).Google Scholar
  30. 30.
    V. I. Nikolaev, N. A. Pertsev, and B. I. Smirnov, Fiz. Tverd. Tela 33, 93 (1991).Google Scholar
  31. 31.
    T. Kataoka, L. Colombo, and J. C. M. Li, Philos. Mag. Ser. A 49, 409 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    V. I. Nikolaev, N. A. Pertsev, and B. I. Smirnov, Fiz. Tverd. Tela 30, 2996 (1988).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations