Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 638–643 | Cite as

The Optical Properties of Aperiodic Thin-Layer Structures: The Effective Optical Thickness

  • A. V. KozarEmail author


Simple analytical relationships between the geometry of aperiodic thin-layer structures and the phase component of the reflection coefficient were deduced and investigated. The effective optical thickness of an aperiodic structure was introduced as a new parameter and then was analytically defined. The two-layer thin-layer model was proposed to describe wave properties of aperiodic thin layer structures with a weak spatial heterogeneity of the refractive index. This model significantly simplifies the relations that are used to analyze wave properties of this class of multilayer structures. The validity of the analytical results was proved by corresponding numerical calculations.


multilayer structures interference 



  1. 1.
    T. V. Rozenberg, The Optics of Thin-Film Coatings (Nauka, Moscow, 1958).Google Scholar
  2. 2.
    P. Kard, Analysis and Synthesis of Multilayer Interference Coatings (Valgus, Tallinn, 1971).Google Scholar
  3. 3.
    L. V. Brekhovskikh, Waves in Layered Media (Akad. Nauk SSSR, Moscow, 1973).Google Scholar
  4. 4.
    H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).CrossRefGoogle Scholar
  5. 5a.
    A. S. Morlens, Opt. Lett. 31, 1558 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Kozar and A. V. Trofimov, Moscow Univ. Phys. Bull. 68, 377 (2013). S0027134491305010XADSCrossRefGoogle Scholar
  7. 7.
    A. Kikuchi and T. Miyamoto, Jpn. J. Appl. Phys. 53, 08MC02 (2014).CrossRefGoogle Scholar
  8. 8.
    N. Dadashzadeh and O. G. Romanov, Vestn. Beloruss. Gos. Univ. Ser. 1, No. 1, 11 (2014).Google Scholar
  9. 9.
    F. Canova and L. Poletto, Optical Technologies for Extreme-Ultraviolet and Soft X-Ray Coherent Sourses (Springer, 2015).CrossRefGoogle Scholar
  10. 10.
    A. V. Kozar’, in Proc. All-Union Conf. “Design and Application of Radioelectronic Devices Based on Dielectric Waveguides and Cavities, Saratov, 1983, p. 136.Google Scholar
  11. 11.
    A. V. Kozar’, in Proc. All-Union Seminar “Synthesis and Application of Multilayer Interference Systems,” Moscow, 1984, p. 118.Google Scholar
  12. 12.
    A. V. Kozar’, Opt. Spektrosk. 59, 1132 (1985).Google Scholar
  13. 13.
    A. V. Kozar’, Opt. Spektrosk. 64, 1130 (1988).Google Scholar
  14. 14.
    A. V. Kozar, in Proc. Int. Congress on Optical Science and Engineering “Optical Thin Films and Applications,” Hague, 1990, p. 45.Google Scholar
  15. 15.
    A. V. Kozar and E. L. Ryazanova, Moscow Univ. Phys. Bull. 45 (5), 50 (1990).Google Scholar
  16. 16.
    A. V. Kozar, in Proc. OSA Topical Meeting on Optical Interference Coatings, Tucson, 1992, p. 97.Google Scholar
  17. 17.
    A. V. Kozar’, Preprint No. 8 (Physical Faculty, Moscow State Univ., Moscow, 2003).Google Scholar
  18. 18.
    A. V. Kozar’ and E. V. Putrina, Vestn. Mosk. Univ. Fiz. Astron. 31 (6), 57 (1990).Google Scholar
  19. 19.
    A. V. Kozar’, E. V. Putrina, and O. V. Fionova, Vestn. Mosk. Univ. Fiz. Astron. 36 (3), 39 (1995).Google Scholar
  20. 20.
    A. V. Kozar and E. V. Putrina, Moscow Univ. Phys. Bull. 47 (6), 53 (1992).Google Scholar
  21. 21.
    S. P. Aleinikova, A. V. Kozar’, and E. V. Putrina, in Proc. IV All-Russian School-Seminar “Wave Phenomena in Inhomogeneous Media,” Krasnovidovo, 1994, p. 114.Google Scholar
  22. 22.
    Yu. A. Bobrovnikov, P. N. Gorokhov, and A. V. Kozar’, Quantum Electron. 33, 1019 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    A. V. Kozar, Moscow Univ. Phys. Bull. 64, 291 (2009). Scholar
  24. 24.
    Yu. A. Bobrovnikov, A. V. Kozar’, and P. N. Gorokhov, in Proc. VIII All-Russian School-Seminar “Wave Phenomena in Inhomogeneous Media,” Moscow, 2013, p. 53.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations