Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 651–658 | Cite as

The Influence of Changes in the Structure of Hydrogen Bonds of Water on the Electrophysical Properties of Matrix–Water Systems in Stepwise Heating

  • N. D. GavrilovaEmail author
  • I. A. MalyshkinaEmail author


Bound and free water are present in a wide variety of solids, that is single crystals, polymers, and biopolymers, as well as in media with a hydrogen bond network, as in water (2.7 ± 0.1 Å in length). Some objects behave in the same way as two-component systems (open systems) under external influences and demonstrate an abnormal change in properties at the same temperature as water. This paper presents the results of studies of the temperature behavior of the permittivity, conductivity, and conductivity relaxation time of some hydrophilic polymers, crystallohydrates, and ferroelectrics. The analysis of the results showed that temperature anomalies of the selected properties are observed in the vicinity of 20, 35, 65–75, and near 100°C, which are “special” temperatures for water: in the vicinity of 20, 35, 50°C the destruction of clusters of H2O molecules occurs, while at higher temperatures there is a transition of structural water into free water. It is possible that the discrete nature of the diffuse temperature peaks of the properties is due to the presence of discrete energy levels of protons in the matrix–water system, which during stepwise heating (slow kinetics) leads to a rearrangement or destruction of the OH–O hydrogen bond network, as well as the overfilling of the proton levels in the two-minimum potential, the release of deep traps, and changes in the set of current carriers, their mobility, and the trajectories of transport in bulk.


matrix–water system crystallohydrates dielectric properties hydrogen bonds  water destruction temperatures 



  1. 1.
    N. D. Gavrilova and V. K. Novik, Moscow Univ. Phys. Bull. 66, 260 (2011). doi 10.3103/S0027134911030076ADSCrossRefGoogle Scholar
  2. 2.
    N. D. Gavrilova and A. A. Davydova, Moscow Univ. Phys. Bull. 68, 143 (2013). doi 10.3103/S0027134913020057ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Vorobyev, N. D. Gavrilova, and A. M. Lotonov, Moscow Univ. Phys. Bull. 69, 175 (2014). doi 10.3103/S0027134914020131ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Vorobyev, N. D. Gavrilova, and A. M. Lotonov, Moscow Univ. Phys. Bull. 70, 175 (2015). doi 10.3103/S0027134915010129CrossRefGoogle Scholar
  5. 5.
    N. D. Gavrilova, O. V. Dimitrova, A. M. Lotonov, N. N. Mochenova, and V. K. Novik, Moscow Univ. Phys. Bull. 63, 127 (2014). doi 10.3103/S0027134908020112ADSCrossRefGoogle Scholar
  6. 6.
    N. D. Gavrilova, I. A. Malyshkina, E. E. Makhaeva, et al., Ferroelectrics 504, 3 (2016). doi 10.1080/00150193.2016.1238284CrossRefGoogle Scholar
  7. 7.
    N. D. Gavrilova, A. V. Vorob’ev, I. A. Malyshkina, E. E. Makhaeva, and V. K. Novik, Polym. Sci. Ser. A 58, 33 (2016). doi 10.1134/S0965545X16010016CrossRefGoogle Scholar
  8. 8.
    N. D. Gavrilova, A. V. Vorobiev, I. A. Malyshkina, and V. K. Novik, Ferroelectrics 478, 88 (2015). doi 10.1080/00150193.2015.1011493CrossRefGoogle Scholar
  9. 9.
    N. D. Gavrilova, V. K. Novik, and I. A. Malyshkina, J. Non-Cryst. Solids 483, 60 (2018). doi 10.1016/j.jnoncrysol.2017.12.056ADSCrossRefGoogle Scholar
  10. 10.
    N. D. Gavrilova, I. A. Malyshkina, V. K. Novik, and A. V. Vorobiev, Ferroelectrics 507, 172 (2017). doi 10.1080/00150193.2017.1283934CrossRefGoogle Scholar
  11. 11.
    Water in Polymers, Ed. by S. P. Rowland (American Chemical Society, 1980).Google Scholar
  12. 12.
    P. A. Rebinder, Surface Phenomena in Disperse Systems (Nauka, Moscow, 1979).Google Scholar
  13. 13.
    D. Eisenberg and W Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, 1969).Google Scholar
  14. 14.
    R. Janoshek, E. G. Weidemann, H. Pfeiffer, and G. Zundel, J. Am. Chem. Soc. 94, 2387 (1972). doi 10.1021/ja00762a032CrossRefGoogle Scholar
  15. 15.
    L. A. Shcherbachenko, N. T. Maksimova, E. S. Komarov, L. I. Ruzhnikov, V. A. Karnakov, E. S. Baryshnikov, D. A. Krasnov, A. A. Troshev, D. S. Baryshnikov, and L. I. Ezhova, Tech. Phys. 57, 1417 (2012). doi 10.1134/S1063784212100209CrossRefGoogle Scholar
  16. 16.
    G. R. Ivanitskii, A. A. Deev, and E. P. Khizhnyak, Phys.-Usp. 57, 37 (2014). doi 10.3367/UFNe.0184.201401b.0043CrossRefGoogle Scholar
  17. 17.
    Z. A. Kats, Production of Dried Vegetables, Potatoes, and Fruits (Legkaya i Pishchevaya Promyshlennost’, Moscow, 1984).Google Scholar
  18. 18.
    G. A. Lushcheikin, Russ. Chem. Rev. 52, 804 (1983). doi 10.1070/RC1983v052n08ABEH002884ADSCrossRefGoogle Scholar
  19. 19.
    R. Kohlrausch, Pogg. Ann. Phys. Chem. 91, 179 (1854).ADSCrossRefGoogle Scholar
  20. 20.
    G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970). doi 10.1039/TF9706600080CrossRefGoogle Scholar
  21. 21.
    A. C. Lopes, C. M. Costa, R. Sabater i Serra, et al., Solid State Ionics 235, 42 (2013). doi 10.1016/j.ssi.2013.01.013CrossRefGoogle Scholar
  22. 22.
    A. V. Milovanov, J. J. Rasmussen, and K. Rypdal, Phys. Lett. A 372, 2148 (2008). doi doi 10.1016/j.physleta.2007.11.025ADSCrossRefGoogle Scholar
  23. 23.
    A. K. Jonscher, Dielectric Relaxation in Solids (Dielectric Press, Chelsea, 1983).Google Scholar
  24. 24.
    I. D. Nabitovich, N. A. Tsal’, and N. N. Romanyuk, Kristallografiya, No. 4, 985 (1989).Google Scholar
  25. 25.
    A. K. Kukushkin and S. A. Kuznetsova, Russ. J. Gen. Chem. 77, 2040 (2007).CrossRefGoogle Scholar
  26. 26.
    O. A. Kalmatskaya and V. A. Karavev, Biophysics 60, 843 (2015). doi 10.1134/S0006350915050085CrossRefGoogle Scholar
  27. 27.
    O. A. Kalmatskaya, I. P. Levykina, S. V. Patsaeva, V. A. Karavaev, and V. I. Yuzhakov, Moscow Univ. Phys. Bull. 68, 466 (2013). doi 10.3103/S0027134913060076ADSCrossRefGoogle Scholar
  28. 28.
    L. A. Shcherbachenko, V. S. Borisov, N. T. Maksimova, E. S. Baryshnikov, V. A. Karnakov, S. D. Mar-chuk, Ya. V. Ezhova, and L. I. Ruzhnikov, Tech. Phys. 54, 1372 (2009). doi 10.1134/S1063784209090199CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations