Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 605–611 | Cite as

Evolution of the Neutron Single-Particle Structure of Neutron-Rich Isotones with N = 28 in the Dispersive Optical Model

  • O. V. Bespalova


The evolution of the single-particle characteristics of isotones with N = 28 upon approaching the neutron drip line has been calculated using a dispersive optical model. According to the calculation, the particle–hole gap N = 28 sharply decreases with an excess of neutrons so that the 1f7/2, 2p3/2 and 2p1/2 states are almost degenerate at the neutron drip line with an occupation probability close to 0.5. Due to the Jahn–Teller effect, the degeneracy of these states is one of the causes of deformation of neutron-rich isotones with N = 28.


dispersive optical model single-particle characteristics of nuclei neutron drip line 



The author thanks Prof. B. S. Ishkhanov and Dr. I. N. Boboshin for helpful discussions and A. A. Kli-mochkina for help in calculations.


  1. 1.
    T. R. Werner, J. A. Sheikh, M. Misu, et al., Nucl. Phys. A 597, 327 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    P.-G. Reinhardt, D. J. Dean, W. Nazarewicz, et al., Phys. Rev. C 60, 014316 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    G. A. Lalazissis, D. Vretenar, P. Ring, et al., Phys. Rev. C 60, 014310 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    S. Peru, M. Giroda, and J. F. Berger, Eur. Phys. J. A 49, 35 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    R. Rodriguez-Guzman, J. L. Egido, and L. M. Robledo, Phys. Rev. C 65, 024304 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    S. Ebata and M. Kimura, Phys. Rev. C 91, 014309 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    H. A. Jahn and E. Teller, Proc. R. Soc. London, Ser. A 161, 220 (1937).ADSCrossRefGoogle Scholar
  8. 8.
    P.-G. Reinhard and E. W. Otten, Nucl. Phys. A 420, 173 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Suzuki, H. Nakada, and S. Miyahara, Phys. Rev. C 94, 024343 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Utsuno, T. Otsuka, B. A. Brown, et al., Phys. Rev. C 86, 051301(R) (2012).Google Scholar
  11. 11.
    C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).ADSGoogle Scholar
  12. 12.
    W. H. Dickhoff, R. J. Charity, and M. H. Mahzoon, J. Phys. G 44, 033001 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Al-Ohali, J. P. Delaroche, C. R. Howell, et al., Phys. Rev. C 86, 034603 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    O. V. Bespalova, N. A. Fedorov, A. A. Klimochkina, et al., Eur. Phys. J. A 54, 2 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    M. Wang, G. Audi, A. H. Wapstra, et al., Chin. Phys. C 36, 1603 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88, 024308 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    J. M. Mueller, R. J. Charity, R. Shane, et al., Phys. Rev. C 83, 064605 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    S. F. Hicks, S. E. Hicks, G. R. Shen, and M. T. McEllistrem, Phys. Rev. C 41, 2560 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, E. A. Romanovsky, T. I. Spasskaya, and T. P. Timokhina, Phys. At. Nucl. 71, 36 (2008). doi doi 10.1134/S1063778808010043CrossRefGoogle Scholar
  21. 21.
    H. Grawe and M. Lewitowicz, Nucl. Phys. A 693, 116 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    L. Gaudefroy, O. Sorlin, D. Beaumel, et al., Phys. Rev. Lett. 97, 092501 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    F. Nowacki and A. Poves, Phys. Rev. C 79, 014310 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    G. Burgunder, O. Sorlin, F. Nowacki, et al., Phys. Rev. Lett. 112, 042502 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. V. Bespalova
    • 1
  1. 1.Moscow State University, Skobeltsyn Institute of Nuclear PhysicsMoscowRussia

Personalised recommendations