Skip to main content
Log in

Improved Generation of Higher Harmonics and Suppression of the Lowest Harmonics in an X-Ray FEL with a Two-Frequency Undulator

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

An Erratum to this article was published on 01 November 2019

An Erratum to this article was published on 01 May 2019

This article has been updated

Abstract

Theoretical research and simulation of the suppression of the lowest harmonics of free-electron laser radiation (FEL) with a two-frequency undulator was carried out. A phenomenological model of an FEL that describes the evolution of power in an FEL considering all the main losses was used. Radiation of harmonics in an FEL with a two-frequency flat undulator is compared with the radiation of harmonics in an FEL with an ordinary flat undulator. Radiation of harmonics and the FEL-induced energy spread in a single-pass FEL, where harmonics that are lower with respect to the nth harmonic are suppressed, for example, by a shift of the electron phase relative to photons by kπ/n, k = even, between the undulator walls were investigated. The advantages of using a two-frequency undulator in an FEL with suppressed lowest harmonics and the possibility of generating high-power X-ray radiation of higher harmonics in a linear mode are illustrated. The power of the higher harmonics can exceed the pitch power of an ordinary FEL with a flat undulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Change history

  • 17 March 2020

    The authors apologize for the misprints in the article “Improved Generation of Higher Harmonics and Suppression of the Lowest Harmonics in an X-Ray FEL with a Two-Frequency Undulator” by K. Zhukovsky in <Emphasis Type="Italic">Moscow University Physics Bulletin, 2018, Vol. 73, No. 5, pp. 462–469</Emphasis>, DOI: <ExternalRef><RefSource>https://doi.org/10.3103/S0027134918050193</RefSource><RefTarget Address="10.3103/S0027134918050193" TargetType="DOI"/></ExternalRef>, and communicate the following corrected formula (5) for the Bessel coefficients <Emphasis Type="Italic">f</Emphasis><Subscript><Emphasis Type="Italic">n</Emphasis></Subscript> of the two-frequency undulator:

  • 06 August 2019

    We hereby clarify the following correct mathematical formof <Emphasis Type="Bold">formula (5) and formulas in the text above</Emphasis> it for the Bessel coefficients of a dual-frequency undulator:

REFERENCES

  1. V. G. Bagrov et al., Theory of Emission of Relativistic Particles, Ed. by V.A. Bordovitsyn (Fizmatlit, Moscow, 2002).

    Google Scholar 

  2. V. G. Bagrov, I. M. Ternov, and B. V. Kholomai, Emission of Relativistic Electrons in a Longitudinal Periodic Electric Field of a Crystal (Akad. Nauk SSSR, Tomsk, 1987).

    Google Scholar 

  3. V. L. Ginzburg, Akad. Nauk SSSR, Ser. Fiz. 11, 1651 (1947).

    Google Scholar 

  4. H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys. 24, 826 (1953).

    Google Scholar 

  5. L. A. Artsimovich and I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 16, 379 (1946).

    ADS  Google Scholar 

  6. I. M. Ternov, V. V. Mikhailin, and V. R. Khalilov, Synchrotron Radiation and Its Applications (Mosk. Gos. Univ., Moscow, 1980).

    Google Scholar 

  7. D. F. Alferov, Yu. A. Bashmakov, and E. G. Bessonov, Zh. Tekh. Fiz. 18, 1336 (1974).

    Google Scholar 

  8. D. F. Alferov, Yu. A. Bashmakov, and P. A. Cherenkov, Sov. Phys. Usp. 32, 200 (1989).

    ADS  Google Scholar 

  9. V. I. Alexeev and E. G. Bessonov, Nucl. Instrum. Methods Phys. Res., Sect. A 308, 140 (1991).

    Google Scholar 

  10. B. W. J. McNeil and N. R. Thompson, Nat. Photonics 4, 814 (2010).

    ADS  Google Scholar 

  11. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys. 88, 015006 (2016).

    ADS  Google Scholar 

  12. Z. Huang and K. J. Kim, Phys. Rev. Spec. Top.–Accel. Beams 10, 034801 (2007).

    ADS  Google Scholar 

  13. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers (Springer, 2000).

    Google Scholar 

  14. R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun. 50, 373 (1984).

    ADS  Google Scholar 

  15. P. Schmüser, M. Dohhis, J. Rossbach, and C. Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime: Physical Principles, Experimental Results, Technical Realization (Springer, 2014).

    Google Scholar 

  16. C. Pellegrini, Phys. Scr. 2016, 014004 (2016).

    Google Scholar 

  17. J. M. J. Madey, J. Appl. Phys. 42, 1906 (1971).

    ADS  Google Scholar 

  18. L. R. Elias et al., Phys. Rev. Lett. 36, 717 (1976).

    ADS  Google Scholar 

  19. D. A. Deacon et al., Phys. Rev. Lett. 38, 892 (1977).

    ADS  Google Scholar 

  20. N. M. Kroll and W. A. McMullin, Phys. Rev. A 17, 300 (1978).

    ADS  Google Scholar 

  21. W. B. Colson, Nucl. Instrum. Methods Phys. Res., Sect. A 393, 82 (1997).

    Google Scholar 

  22. P. Sprangle and R. A. Smith, Phys. Rev. A 21, 293 (1980).

    ADS  Google Scholar 

  23. R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun. 50, 373 (1984).

    ADS  Google Scholar 

  24. K. J. Kim and M. Xie, Nucl. Instrum. Methods Phys. Res., Sect. A 331, 359 (1993).

    Google Scholar 

  25. L.-H. Yu et al., Science 289, 932 (2000).

    ADS  Google Scholar 

  26. L.-H. Yu, Phys. Rev. A 44, 5178 (1991).

    ADS  Google Scholar 

  27. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, Opt. Commun. 202, 169 (2002).

    ADS  Google Scholar 

  28. T. Shaftan and L.-H. Yu, Phys. Rev. E 71, 046501 (2005).

    ADS  Google Scholar 

  29. H.-T. Li and Q.-K. Jia, Chin. Phys. C 37, 028102 (2013).

    ADS  Google Scholar 

  30. H.-X. Deng and Z.-M. Dai, Chin. Phys. C 37, 102001 (2013).

    ADS  Google Scholar 

  31. H.-X. Deng and Z.-M. Dai, Chin. Phys. C 34, 1140 (2010).

    ADS  Google Scholar 

  32. Z. Ling et al., Chin. Phys. C 40, 098102 (2016).

    ADS  Google Scholar 

  33. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 70, 232 (2015).

    ADS  Google Scholar 

  34. K. Zhukovsky, J. Electromagn. Waves Appl. 29, 132 (2015).

    Google Scholar 

  35. K. Zhukovsky, J. Electromagn. Waves Appl. 28, 1869 (2014).

    Google Scholar 

  36. K. Zhukovsky, Laser Part. Beams 34, 447 (2016).

    ADS  Google Scholar 

  37. G. Mishra, M. Gehlot, and J.-K. Hussain, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 495 (2009).

    Google Scholar 

  38. G. Dattoli, V. V. Mikhailin, P. L. Ottaviani, and K. Zhukovsky, J. Appl. Phys. 100, 084507 (2006).

    ADS  Google Scholar 

  39. G. Dattoli, N. S. Mirian, E. Di Palma, and V. Petrillo, Phys. Rev. Spec. Top.–Accel. Beams 17, 050702 (2014).

    ADS  Google Scholar 

  40. T. Shintake, Nat. Photonics 2, 555 (2008).

    Google Scholar 

  41. L.-H. Yu et al., Phys. Rev. Lett. 91, 074801 (2003).

    ADS  Google Scholar 

  42. B. McNeil, Nat. Photonics 2, 522 (2008).

    ADS  Google Scholar 

  43. K. Tiedtke et al., New J. Phys. 11, 023029 (2009).

    ADS  Google Scholar 

  44. E. A. Seddon et al., Rep. Prog. Phys. 80, 115901 (2017).

    ADS  Google Scholar 

  45. E. L. Saldin et al., New J. Phys. 12, 035010 (2010).

    ADS  Google Scholar 

  46. M. Quattromini et al., hys. Rev. Spec. Top.–Accel. Beams 15, 080704 (2012).

    Google Scholar 

  47. R. P. Walker, Nucl. Instrum. Methods Phys. Res., Sect. A 335, 328 (1993).

    Google Scholar 

  48. N. A. Vinokurov and E. B. Levichev, Phys.-Usp. 58, 850 (2015).

    Google Scholar 

  49. H. Onuki and P. Elleaume, Undulators, Wigglers and Their Applications (Taylor & Francis, New York, 2003).

    Google Scholar 

  50. G. Dattoli and P. L. Ottaviani, Opt. Commun. 204, 283 (2002).

    ADS  Google Scholar 

  51. G. Dattoli, P. L. Ottaviani, and S. Pagnutti, J. Appl. Phys. 97, 113102 (2005).

    ADS  Google Scholar 

  52. G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys. 95, 3206 (2004).

    ADS  Google Scholar 

  53. K. Zhukovsky, Nucl. Instrum. Methods Phys. Res., Sect. B 369, 9 (2016).

    Google Scholar 

  54. K. Zhukovsky, Opt. Commun. 353, 35 (2015).

    ADS  Google Scholar 

  55. K. Zhukovsky and I. Potapov, Laser Part. Beams 35, 326 (2017).

    ADS  Google Scholar 

  56. F. De Martini, in Laser Handbook, Ed. by W. B. Colson, C. Pellegrini, and A. Renieri (North-Holland, Amsterdam, 1990), Vol. 6, p. 195.

    Google Scholar 

  57. R. Bonifacio, L. De Salvo, and P. Pierini, Nucl. Instrum. Methods Phys. Res., Sect. A 293, 627 (1990).

    Google Scholar 

  58. Z. Huang and K.-J. Kim, Phys. Rev. E 62, 7295 (2000).

    ADS  Google Scholar 

  59. K. Zhukovsky, EPL 119, 34002 (2017).

    ADS  Google Scholar 

  60. K. V. Zhukovsky, Russ. Phys. J. 60, 1630 (2018).

    Google Scholar 

  61. K. V. Zhukovsky, Russ. Phys. J. 61, 278 (2018).

    Google Scholar 

  62. K. Zhukovsky, J. Phys. D: Appl. Phys. 50, 505601 (2017).

    Google Scholar 

  63. K. Zhukovsky, J. Appl. Phys. 122, 233103 (2017).

    ADS  Google Scholar 

  64. B. W. J. McNeil, G. R. M. Robb, M. W. Poole, and N. R. Thompson, Phys. Rev. Lett. 96, 084801 (2006).

    ADS  Google Scholar 

  65. E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. Spec. Top.–Accel. Beams 15, 080702 (2012).

    ADS  Google Scholar 

  66. M. Altarelli et al., Report No. XFEL.EUAR-2016 (European X-Ray Free-Electron Laser Facility, 2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Professor A.V. Borisov, Professor V.Ch. Zhukovskii, Professor A. N. Vasil’ev, and Leading Researcher A.E. Lobanov for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Translated by I. P. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. Improved Generation of Higher Harmonics and Suppression of the Lowest Harmonics in an X-Ray FEL with a Two-Frequency Undulator. Moscow Univ. Phys. 73, 462–469 (2018). https://doi.org/10.3103/S0027134918050193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918050193

Keywords:

Navigation