Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 187–192 | Cite as

Spatial Autocorrelation of the Level of Radio Signal Amplitude at Oblique Propagation in the Ionosphere

  • L. I. Prikhodko
  • A. G. Vologdin
  • I. A. Shirokov
Radiophysics, Electronics, Acoustics

Abstract

Fluctuations of the amplitude level of a wave that propagates through a randomly inhomogeneous medium with regular reflection are considered. Analytical expressions for dispersion and amplitude correlation functions are derived in the parabolic model of a regular ionospheric layer inside the layer and at the exit from it. Special attention is paid to the study of the reflection area, where the conditions for the applicability of the geometric-optics method are violated. The results are analyzed numerically for ionospheric sounding under different conditions.

Keywords

ionospheric layer random inhomogeneities amplitude fluctuations geometrical-optics approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Tinin, B. C. Kim, and S. N. Kolesnik, Waves Random Complex Media 15, 61 (2005).CrossRefADSGoogle Scholar
  2. 2.
    R. M. Manning, Waves Random Complex Media 15, 405 (2005).CrossRefADSGoogle Scholar
  3. 3.
    Yu. A. Kravtsov, A. Kasliar, S. A. Shapiro, S. Buske, and T. Muller, Waves Random Complex Media 15, 43 (2005).MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    P. Fayar and T. R. Field, Waves Random Complex Media 21, 80 (2011).MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    F. G. Bass, Waves Random Complex Media 20, 251 (2010).MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    N. A. Zabotin and J. W. Wright, Radio Sci. 39, RS3002 (2004).ADSGoogle Scholar
  7. 7.
    D. S. Lukin, E. A. Palkin, E. B. Ipatov, A. S. Kryukovskii, and D. V. Rastyagaev, in Proc. XXV Open Sci. Conf. “Radiowave Propagation,” Tomsk, Russia, 2016, Vol. 1, p.40.Google Scholar
  8. 8.
    A. G. Vologdin, L. I. Prikhod’ko, and I. A. Shirokov, J. Commun. Technol. Electron. 55, 870 (2010). doi doi 10.1134/S1064226910080048CrossRefGoogle Scholar
  9. 9.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978).zbMATHGoogle Scholar
  10. 10.
    M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves (Nauka, Moscow, 1990).zbMATHGoogle Scholar
  11. 11.
    V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Nauka, Moscow, 1967).Google Scholar
  12. 12.
    A. G. Vologdin, O. K. Vlasova, and L. I. Prikhod’ko, J. Commun. Technol. Electron. 52, 1100 (2007).CrossRefGoogle Scholar
  13. 13.
    K. Davies, Ionospheric Radio Waves (Blaisdell, London, 1969).Google Scholar
  14. 14.
    Ya. L. Al’pert, Radiowave Propagation and the Ionosphere (Akad. Nauk SSSR, Moscow, 1960).Google Scholar
  15. 15.
    M. B. Vinogradova and V. D. Gusev, Radiotekh. Elektron. 19, 481 (1974).ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • L. I. Prikhodko
    • 1
  • A. G. Vologdin
    • 1
  • I. A. Shirokov
    • 2
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Department of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations