Skip to main content
Log in

Antireflection Layers for Solar Cells Based on Silicon Nanowires Produced on a Doped Wafer

  • Optics and Spectroscopy. Laser Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In this paper, the layers of quantum silicon nanowires produced on highly-doped wafers were studied via the Raman spectroscopy and IR reflection spectroscopy methods. The porosity of layers of different thickness has been determined from IR spectroscopy data using the Bruggeman effective medium model. According to Raman spectroscopy data, the concentration of the free charge carriers in quantum silicon nanowires drops in comparison with that in the wafer. On the basis of these results we conclude that the thickness of a quantum nanowires layer of 2 μm is optimal for its use as an antireflection coating in solar cells. Layers with thicknesses of 10 and 15 μm were studied. It was demonstrated that there is no effect of Raman-scattering enhancement in these layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Saga, NPG Asia Mater. 2, 96 (2010). doi 10.1038/asiamat.2010.82

    Article  Google Scholar 

  2. A. Gaucher, A. Cattoni, C. Dupuis, et al., Nano Lett. 16, 5358 (2016). doi 10.1021/acs.nanolett.6b01240

    Article  ADS  Google Scholar 

  3. J. Oh, H.-C. Yuan, and H. M. Branz, Nat. Nanotechnol. 7, 743 (2012). doi 10.1038/nnano.2012.166

    Article  ADS  Google Scholar 

  4. P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012). doi 10.1038/ncomms1691

    Article  ADS  Google Scholar 

  5. Yu. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1973).

    Google Scholar 

  6. D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).

    Article  Google Scholar 

  7. F. Cerdeira, T. A. Fjeldly, and M. Cardona, Phys. Rev. B 9, 4344 (1974).

    Article  ADS  Google Scholar 

  8. K. V. Bunkov, L. A. Golovan, and K. A. Gonchar, Semiconductors 47, 354 (2013).

    Article  ADS  Google Scholar 

  9. M. A. Green and M. J. Keevers, Prog. Photovoltaics: Res. Appl. 3, 189 (1995).

    Article  Google Scholar 

  10. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  ADS  Google Scholar 

  11. L. A. Osminkina, E. V. Kurepina, A. V. Pavlikov, V. Yu. Timoshenko, and P. K. Kashkarov, Semiconductors 38, 581 (2004).

    Article  ADS  Google Scholar 

  12. H. Tomioka and S. Adachi, ECS J. Solid State Sci. Technol. 2, 253 (2013). doi 10.1149/2.007306jss

    Article  Google Scholar 

  13. A. Pavlikov, E. Konstantinova, and V. Timoshenko, Phys. Status Solidi C 8, 1928 (2011). doi 10.1002/pssc.201000088

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavlikov.

Additional information

Original Russian Text © A.V. Pavlikov, O.V. Rakhimova, P.K. Kashkarov, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2018, No. 2, pp. 78–83.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlikov, A.V., Rakhimova, O.V. & Kashkarov, P.K. Antireflection Layers for Solar Cells Based on Silicon Nanowires Produced on a Doped Wafer. Moscow Univ. Phys. 73, 199–204 (2018). https://doi.org/10.3103/S0027134918020121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918020121

Keywords

Navigation