Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 234–239 | Cite as

Generation of a Tsunami from the Submarine Landslide Near the East Coast of Sakhalin Island

  • A. A. Ivanova
  • E. A. Kulikov
  • I. V. Fine
  • B. V. Baranov
Physics of Earth, Atmosphere, and Hydrosphere

Abstract

The effect of the generation of tsunami waves caused by collapse of the continental slope and by formation of a submarine landslide near the east coast of Sakhalin Island is reproduced within the framework of a hydrodynamic model. The calculations performed using the numerical hydrodynamic model showed that such a submarine landslide can generate a tsunami wave up to 18 m high on the Sakhalin coast.

Keywords

tsunami numerical model submarine landslides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Gusiakov, WinITDB (Integrated Tsunami Database for the World Ocean), Version 5.16 (Inst. of Computational Mathematics and Mathematical Geophysics, Novosibirsk, 2010).Google Scholar
  2. 2.
    S. Bondevik, J. Mangerud, and S. Dawson, EOS 84, 289 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    A. Romundset and S. Bondevik, J. Quat. Sci. 26, 457 (2011). doi doi 10.1002/jqs.1511CrossRefGoogle Scholar
  4. 4.
    R. Mallet and J. W. Mallet, Fourth Report upon the Facts and Theory of Earthquake Phenomena (Taylor and Francis, London, 1852).Google Scholar
  5. 5.
    J. P. Bardet, C. E. Synolakis, H. L. Davies, et al., Pure Appl. Geophys. 160, 1793 (2003). doi 10.1007/s00024-003-2406-0ADSCrossRefGoogle Scholar
  6. 6.
    P. Ren, B. D. Bornhold, and D. B. Prior, Sediment. Geol. 103, 201 (1996). doi 10.1016/0037-0738(95)00090-9ADSCrossRefGoogle Scholar
  7. 7.
    E. A. Kulikov, A. B. Rabinovich, R. E. Thomson, et al., J. Geophys. Res. 101, 6609 (1996). doi 10.1029/95JC03562ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Kulikov, A. B. Rabinovich, I. V. Fain, B. D. Bornhold, and R. E. Thomson, Oceanology 38, 323 (1998).Google Scholar
  9. 9.
    T. S. Murty, J. Geophys. Res. 84, 7777 (1979). doi 10.1029/JC084iC12p07777ADSCrossRefGoogle Scholar
  10. 10.
    M. Canals, G. Lastras, R. Urgeles, et al., Mar. Geol. 213, 9 (2004). doi 10.1016/j.margeo.2004.10.001ADSCrossRefGoogle Scholar
  11. 11.
    I. V. Fine, A. Rabinovich, R. E. Thomson, et al., Mar. Geol. 215, 45 (2005). doi 10.1016/j.margeo. 2004.11.007ADSCrossRefGoogle Scholar
  12. 12.
    E. N. Pelinovskii, Nonlinear Dynamics of Tsunami Waves (Inst. Prikl. Fiz. Akad. Nauk SSSR, Gorky, 1982).Google Scholar
  13. 13.
    S. F. Dotsenko and V. A. Ivanov, Natural Catastrophes in the Azov–Black Sea Region (Morsk. Gidrofiz. Inst., Sevastopol, 2010).Google Scholar
  14. 14.
    L. N. Sretenskii, Theory of Wave Motion of Fluids (ONTI, Moscow–Leningrad, 1935).Google Scholar
  15. 15.
    B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, Cham, 2016), p.263.CrossRefGoogle Scholar
  16. 16.
    L. Jiang and P. H. LeBlond, J. Geophys. Res. 97, 12731 (1992). doi 10.1029/92JC00912ADSCrossRefGoogle Scholar
  17. 17.
    L. Jiang and P. H. LeBlond, J. Phys. Oceanogr. 24, 559 (1994). doi 10.1175/1520-0485(1994)024<0559: TDMOTG>2.0.CO;2ADSCrossRefGoogle Scholar
  18. 18.
    P. Heinrich, A. Piatanesi, and H. Hebert, Geophys. J. Int. 145, 97 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    P. Heinrich, A. Piatanesi, E. Okal, and H. Hebert, Geophys. Res. Lett. 27, 3037 (2000). doi 10.1029/2000GL011497ADSCrossRefGoogle Scholar
  20. 20.
    F. Imamura, K. Hashi, and M. A. Imteaz, in Tsunami Research at the End of a Critical Decade, Ed. by G. T. Hebenstreit (Springer, Dordrecht, 2001), p.209.Google Scholar
  21. 21.
    I. V. Fine, A. B. Rabinovich, R. E. Thomson, and E. A. Kulikov, in Submarine Landslides and Tsunamis, Ed. by A. C. Yalçiner, E. N. Pelinovsky, E. Okal, and C. E. Synolakis (Springer, Dordrecht, 2003), p. 69. doi 10.1007/978-94-010-0205-9Google Scholar
  22. 22.
    L. I. Lobkovsky, R. Kh. Mazova, L. Yu. Kataeva, and B. V. Baranov, Dokl. Earth Sci. 410, 1156 (2006). doi 10.1134/S1028334X0607035XADSCrossRefGoogle Scholar
  23. 23.
    A. C. Yalçiner, A. Zaytsev, B. Aytore, et al., Oceanography 27 (2), 68 (2014). http://dx.doi.org/10.5670/oceanog.2014.41CrossRefGoogle Scholar
  24. 24.
    B. V. Baranov, L. I. Lobkovskii, E. A. Kulikov, A. B. Rabinovich, Y. K. Jin, and K. A. Dozorova., Dokl. Earth Sci. 449, 354 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    B. V. Baranov, K. A. Dozorova, and D. D. Rukavishnikova, Oceanology 55, 906 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    J. T. Kirby, F. Shi, D. Nicolsky, and S. Misra, Landslides 13, 1421 (2016). doi 10.1007/s10346-016-0682-xCrossRefGoogle Scholar
  27. 27.
    I. V. Fine, A. B. Rabinovich, E. A. Kulikov, et al., in Proc. Int. Conf. on Tsunamis, Paris, France, 1998, p.211.Google Scholar
  28. 28.
    I. V. Fine, E. A. Kulikov, and J. Y. Cherniawsky, Pure Appl. Geophys. 170, 1295 (2013). doi 10.1007/s00024-012-0555-8ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. A. Ivanova
    • 1
  • E. A. Kulikov
    • 1
  • I. V. Fine
    • 2
  • B. V. Baranov
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Ocean SciencesSidneyCanada

Personalised recommendations