Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 179–186 | Cite as

A Method for Estimation of the Parameters of the Primary Particle of an Extensive Air Shower by a High-Altitude Detector

  • V. I. Galkin
  • A. S. Borisov
  • R. Bakhromzod
  • V. V. Batraev
  • S. Z. Latipova
  • A. R. Muqumov
Physics of Nuclei and Elementary Particles

Abstract

A method for estimation of the parameters of the primary particle of an extensive air shower (EAS) by a high-altitude detector complex is described. This method was developed as part of the Pamir-XXI project. The results may be useful for other high-altitude projects and the EAS method in general. The specific configurations of optical detectors for Cherenkov EAS radiation and charged-particle detectors, the methods for data processing, and the attainable accuracy of reconstruction of parameters of primary particles (energy, direction, mass/type) are presented. The results primarily cover optical detectors that are suitable for studying EASs from primary nuclei in the range of energies E0 = 100 TeV–100 PeV and showers from primary γ-quanta with energies of Eγ ≥ 30 TeV. Grids of charged-particle detectors designed to determine the EAS direction and energy in the E0 = 1 PeV–1 EeV range are also considered. The obtained accuracy estimates are the upper limits of the actual experimental accuracies.

Keywords

extensive air showers Cherenkov light statistical modeling statistical pattern recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Borisov and V. I. Galkin, J. Phys.: Conf. Ser. 409, 012089 (2013). doi 10.1088/1742-6596/409/1/012089Google Scholar
  2. 2.
    R. A. Antonov, S. P. Beschapov, E. A. Bonvech, et al., J. Phys.: Conf. Ser. 409, 012088 (2013). doi 10.1088/1742-6596/409/1/012088Google Scholar
  3. 3.
    V. I. Galkin and T. A. Gzhatdoev, Bull. Russ. Acad. Sci.: Phys. 75, 309 (2011). doi 10.3103/S1062873811030166CrossRefGoogle Scholar
  4. 4.
    D. Heck and T. Pierog, CORSIKA User’s Guide (Karlsruhe Inst. for Technology, 2011).Google Scholar
  5. 5.
    K. Greisen, in Progress in Cosmic Ray Physics, Ed. by J. G. Wilson (North-Holland, Amsterdam, 1956), Vol. 3, p.1.Google Scholar
  6. 6.
    K. Kamata and J. Nishimura, Prog. Theor. Phys. Suppl. 6, 93 (1958).CrossRefADSGoogle Scholar
  7. 7.
    T. C. Weekes, Astrophys. J. 342, 379 (1989).CrossRefADSGoogle Scholar
  8. 8.
    F. A. Aharonian, W. Hofmann, A. K. Konopelko, et al., Astropart. Phys. 6, 343 (1997). doi 10.1016/S0927-6505(96)00069-2CrossRefADSGoogle Scholar
  9. 9.
    J. Aleksic, S. Ansoldi, L. A. Antonelli, et al., Astropart. Phys. 72, 61 (2016). doi 10.1016/j.astropartphys. 2015.04.004CrossRefADSGoogle Scholar
  10. 10.
    V. A. Acciari, M. Beilicke, G. Blaylock, et al., Astrophys. J. 679, 1427 (2008). doi 10.1086/587736CrossRefADSGoogle Scholar
  11. 11.
    J. Linsley, in Proc. 15th Int. Cosmic Ray Conf., Plovdiv, Bulgaria, 1977, Vol. 12, p.89.Google Scholar
  12. 12.
    J. Linsley, in Proc. 16th Int. Cosmic Ray Conf., Kyoto, Japan, 1979, Vol. 9, p.274.Google Scholar
  13. 13.
    J. Linsley and A. A. Watson, Phys. Rev. Lett. 46, 459 (1981).CrossRefADSGoogle Scholar
  14. 14.
    R. Walker and A. A. Watson, J. Phys. G: Nucl. Phys. 7, 1297 (1981).CrossRefADSGoogle Scholar
  15. 15.
    M. Unger, EPJ Web Conf. 53, 04009 (2013). doi 10.1051/epjconf/2013530400910.1051/epjconf/20135304009CrossRefGoogle Scholar
  16. 16.
    W. D. Apel, J. C. Arteaga, K. Bekk, et al., Astropart. Phys. 34, 476 (2011). doi 10.1016/j.astropartphys. 2010.10.016CrossRefADSGoogle Scholar
  17. 17.
    A. Ivanov (Yakutsk Array Group), EPJ Web Conf. 53, 04003 (2013). doi 10.1051/epjconf/2013530400310.1051/epjconf/20135304003CrossRefGoogle Scholar
  18. 18.
    B. A. Antokhonov, D. Besson, S. F. Beregnev, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 639, 42 (2011). doi 10.1016/j.nima.2010.09.142CrossRefADSGoogle Scholar
  19. 19.
    M. Zha (LHAASO Collab.), Int. J. Mod. Phys. Conf. Ser. 10, 147 (2012). doi 10.1142/S2010194512005867CrossRefGoogle Scholar
  20. 20.
    K. Fukunaga, Introduction to Statistical Pattern Recognition (Academic, New York, 1972).Google Scholar
  21. 21.
    GEANT4 Collab., GEANT4 User’s Guide for Application Developers. Version 10.1 (2014).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. I. Galkin
    • 1
    • 2
  • A. S. Borisov
    • 3
  • R. Bakhromzod
    • 1
    • 4
  • V. V. Batraev
    • 1
  • S. Z. Latipova
    • 5
  • A. R. Muqumov
    • 1
    • 4
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Umarov Physical–Technical InstituteAcademy of Sciences of the Republic of TajikistanDushanbeTajikistan
  5. 5.Faculty of PhysicsTajik National UniversityDushanbeTajikistan

Personalised recommendations