Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 193–198 | Cite as

A Coulomb Blockade in a Nanostructure Based on Single Intramolecular Charge Center

  • V. R. Gaydamachenko
  • E. K. Beloglazkina
  • R. A. Petrov
  • S. A. Dagesyan
  • I. V. Sapkov
  • E. S. Soldatov
Radiophysics, Electronics, Acoustics
  • 21 Downloads

Abstract

A novel technique for the production of metal electrodes of a nanotransistor with a nanogap less than 4 nm between them is developed on the basis of controlling the electromigration of previously suspended nanowires of the system. A method that allows the embedding of a molecule of Rh(III) terpyridine with aurophilic ligands between electrodes is elaborated, as well. The characteristics of electron transport through a system that consists of the specified molecule with a single-atom charge center indicate the correlated (single-electron) tunneling of electrons.

Keywords

electromigration atom molecule molecular electronics single-molecule transistor correlated tunneling of electrons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Courtland, IEEE Spectrum 54 (1), 52 (2017). doi 10.1109/MSPEC.2017.7802750CrossRefGoogle Scholar
  2. 2.
    M. Neisser and S. Wurm, Adv. Opt. Technol. 4, 235 (2015). doi 10.1515/aot-2015-0036ADSGoogle Scholar
  3. 3.
    V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, Proc. IEEE 91, 1934 (2003). doi 10.1109/JPROC.2003.818324CrossRefGoogle Scholar
  4. 4.
    D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 62, 345 (1986). doi 10.1007/BF00683469CrossRefADSGoogle Scholar
  5. 5.
    J. M. Thijssen and H. S. J. Van der Zant, Phys. Status Solidi (b) 245, 1455 (2008). doi 10.1002/pssb.200743470CrossRefADSGoogle Scholar
  6. 6.
    J. M. Van Ruitenbeek, in Single-Molecule Electronics, Ed. by M. Kiguchi (Springer, Singapore, 2016), p. 1. doi 10.1007/978-981-10-0724-8_1Google Scholar
  7. 7.
    L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, et al., Chem. Soc. Rev. 43, 7378 (2014). doi 10.1039/c4cs00143eCrossRefGoogle Scholar
  8. 8.
    H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, et al., Appl. Phys. Lett. 75, 301 (1999). doi 10.1063/1.124354CrossRefADSGoogle Scholar
  9. 9.
    D. R. Strachan, D. E. Smith, D. E. Johnston, et al., Appl. Phys. Lett. 86, 043109 (2005). doi 10.1063/1.1857095CrossRefADSGoogle Scholar
  10. 10.
    A. K. Mahapatro, J. Ying, T. Ren, and D. B. Janes, Nano Lett. 8, 2131 (2008). doi 10.1021/nl072982cCrossRefADSGoogle Scholar
  11. 11.
    S. Ghosh, H. Halimun, A. K. Mahapatro, J. Choi, et al., Appl. Phys. Lett. 87, 233509 (2005). doi 10.1063/1.2140470CrossRefADSGoogle Scholar
  12. 12.
    M. F. Lambert, M. F. Goffman, J. P. Bourgoin, and P. Hesto, Nanotechnology 14, 772 (2003).CrossRefADSGoogle Scholar
  13. 13.
    K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph, Nano Lett. 6, 123 (2006).CrossRefADSGoogle Scholar
  14. 14.
    H. Ceric and S. Selberherr, Mater. Sci. Eng., R 71 (5–6), 53 (2011). doi 10.1016/j.mser.2010.09.001CrossRefGoogle Scholar
  15. 15.
    S. A. Dagesyan, E. S. Soldatov, and A. S. Stepanov, Bull. Russ. Acad. Sci.: Phys. 78, 139 (2014). doi 10.3103/S1062873814020117CrossRefGoogle Scholar
  16. 16.
    S. A. Dagesyan, A. S. Stepanov, E. S. Soldatov, and O. V. Snigirev, J. Supercond. Novel Magn. 28, 787 (2015). doi 10.1007/s10948-014-2875-7CrossRefGoogle Scholar
  17. 17.
    K. R. Williams and R. S. Muller, J. Microelectromech. Syst. 5, 256 (1996). doi 10.1109/84.546406CrossRefGoogle Scholar
  18. 18.
    E. K. Beloglazkina, A. G. Majouga, E. A. Manzheliy, A. A. Moiseeva, et al., Polyhedron 85, 800 (2015). doi 10.1016/j.poly.2014.09.037CrossRefGoogle Scholar
  19. 19.
    I. V. Sapkov, E. S. Soldatov, and V. G. Elensky, Proc. SPIE 7025, 70250P (2008).CrossRefADSGoogle Scholar
  20. 20.
    A. B. Zorin, F.-J. Ahlers, J. Niemeyer, T. Weimann, et al., Phys. Rev. B 53, 13682 (1996). doi 10.1103/Phys-RevB.53.13682CrossRefADSGoogle Scholar
  21. 21.
    W. Jeong, K. Kim, Y. Kim, W. Lee, et al., Sci. Rep. 4, 4975 (2014). doi 10.1038/srep04975CrossRefADSGoogle Scholar
  22. 22.
    B. Kießig, R. Schäfer, and H. von Löhneysen, New J. Phys. 16, 013017 (2014). doi 10.1088/1367-2630/16/1/013017CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. R. Gaydamachenko
    • 1
  • E. K. Beloglazkina
    • 2
  • R. A. Petrov
    • 2
  • S. A. Dagesyan
    • 1
  • I. V. Sapkov
    • 1
  • E. S. Soldatov
    • 1
  1. 1.Laboratory of Cryoelectronics, Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations