Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 591–594 | Cite as

Calculations of Structural, Electronic, Chemical Bonding, and Optical Properties of Orthorhombic CsAlTiO4

  • Wei Zeng
  • Qi-Jun Liu
  • Zheng-Tang Liu
Condensed Matter Physics
  • 10 Downloads

Abstract

Structural parameters, electronic, chemical bonding and optical properties of orthorhombic CsAlTiO4 are studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The equilibrium lattice constants, bulk modulus and electronic structure are obtained. To our knowledge, no data are available in literature of orthorhombic CsAlTiO4 with Pnma space group for comparison. Electronic and chemical bonding properties have been studied from the calculations of band structure, density of states and charge densities. The complex dielectric functions are calculated and we have explained the origins of spectral peaks.

Keywords

density-functional theory electronic structure optical properties orthorhombic CsAlTiO4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Madhavi, C. Ferraris, and T. White, J. Solid State Chem. 179, 866 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    A. Stein, F. Li, and N. R. Denny, Chem. Mater. 20, 649 (2008).CrossRefGoogle Scholar
  3. 3.
    B. M. Gatehouse, Acta Crystallogr., Sect. C 45, 1674 (1989).CrossRefGoogle Scholar
  4. 4.
    H. Müller-Buschbaum, J. Alloys Compd. 349, 49 (2003).CrossRefGoogle Scholar
  5. 5.
    G. Z. Zhang, Z. Zhao, S. L. Chen, and P. Dong, Prog. Chem. 21, 948 (2009).Google Scholar
  6. 6.
    V. Peres, P. Fabry, and F. Genet, J. Eur. Ceram. Soc. 13, 403 (1994).CrossRefGoogle Scholar
  7. 7.
    X. C. Yang, W. X. Liu, M. Dubiel, D. Ehrt, and Z. Xu, J. Funct. Mater. 36, 1146 (2005).Google Scholar
  8. 8.
    F. Farges, Am. Mineral. 82, 36 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    F. Farges, G. E. Brown, Jr., and J. J. Rehr, Phys. Rev. B 56, 1809 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    V. Aubin-Chevaldonnet, F. Studer, D. Caurant, D. Gourier, N. Nguyen, A. Ducouret, N. Baffier, and T. Advocat, in Proc. Atalante Int. Conf. on Advances for Future Nuclear Fuel Cycles, Nîmes, France, 2004, p. O32–06.Google Scholar
  11. 11.
    Y. L. Zhao, B. J. Li, H. Zhou, C. Z. Zhang, and F. Sha, J. Nucl. Radiochem. 27, 152 (2005).Google Scholar
  12. 12.
    M. L. Carter, M. W. A. Stewart, E. R. Vance, B. D. Begg, S. Moricca, and J. Tripp, in Proc. GLOBAL Int. Conf. on Advanced Nuclear Fuel Cycles and Systems, Boise, United States, 2007, p. 1022.Google Scholar
  13. 13.
    M. L. Carter, A. L. Gillen, K. Olufson, and E. R. Vance, J. Am. Ceram. Soc. 92, 1112 (2009).CrossRefGoogle Scholar
  14. 14.
    H. F. Gong, J. P. Ma, G. P. Li, and S. S. Wang, Chin. J. Gansu Sci. 21, 150 (2009).Google Scholar
  15. 15.
    M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).ADSGoogle Scholar
  16. 16.
    F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).ADSCrossRefGoogle Scholar
  17. 17.
    Q. J. Liu, Z. T. Liu, L. P. Feng, and H. Tian, Solid State Sci. 12, 1748 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Teaching and Research Group of Chemistry, College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduChina
  2. 2.Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and TechnologySouthwest Jiaotong UniversityChengduChina
  3. 3.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations