Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 609–613 | Cite as

Terrestrial Seismic Activity and Neutrons from the Surface of the Earth Associated with Lunar and Solar Tides

  • N. N. Volodichev
  • E. A. Sigaeva
Astronomy, Astrophysics, and Cosmology
  • 13 Downloads

Abstract

drastic increase in the flux of thermal neutrons of secondary cosmic radiation coming from the Earth was observed in the Pamir Mountains during the solar eclipse of July 22, 1990. In the following years, such phenomena were observed on each new moon and each full moon, when lunar and solar tides combine to produce an exceptionally high resultant tide. Tidal forces may serve as a trigger for the release of the deepearth seismic energy in a certain region. This directed our attention to the search for a temporal correlation between earthquakes and new and full moons, which may help identify a new type of seismic activity precursor. Such a correlation was found in the circum-Pacific belt and the adjacent regions at latitudes above 40° N and 10° S. The results of daytime measurements of the thermal neutron flux from the surface of the Earth in the Western Pamirs (Moskvin Glade, 4200 m above sea level) on August 1–14, 1994, are reported in the present study. Since these days were quiet in terms of weather and heliophysical and geophysical activity, the intensity of neutrons of secondary cosmic radiation was expected to remain almost constant. However, twofold (or even larger) intraday variations of the neutron count rate were observed on August 1–14, 1994. These quiet measurement conditions rule out the possibility that these bursts were associated with certain known extraterrestrial factors. It has been demonstrated that the observed neutron-intensity peaks were produced by lunar and solar tides. These results confirm that tidal forces play a prominent part in the generation of neutron fluxes from the surface of the Earth. The Astronomical Yearbook for 1994 published by the Russian Academy of Sciences was used in the present study.

Keywords

tidal waves new moons full moons thermal neutrons culminations of the Moon and the Sun 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Volodichev, B. M. Kuzhevskii, O. Yu. Nechaev, et al., Astron. Tsirk. Akad. Nauk SSSR, No. 1547, 25 (1991).ADSGoogle Scholar
  2. 2.
    N. N. Volodichev, B. M. Kuzhevskij, O. Yu. Nechaev, et al., in Proc. 22nd Int. Cosmic Ray Conf., Dublin, Ireland, 1991, Vol. 3, p. 689.ADSGoogle Scholar
  3. 3.
    N. N. Volodichev, B. M. Kuzhevskii, O. Yu. Nechaev, et al., Kosm. Issled. 30, 422 (1992).ADSGoogle Scholar
  4. 4.
    N. N. Volodichev, B. M. Kuzhevskii, O. Yu. Nechaev, et al., Kosm. Issled. 31, 120 (1993).ADSGoogle Scholar
  5. 5.
    N. N. Volodichev, B. M. Kuzhevskij, O. Yu. Nechaev, et al., in Proc. 24th Int. Cosmic Ray Conf., Rome, Italy, 1995, Vol. 4, p. 1151.ADSGoogle Scholar
  6. 6.
    N. N. Volodichev, B. M. Kuzhevskij, O. Yu. Nechaev, M. I. Panasyuk, and P. I. Shavrin, Cosmic Res. 35, 135 (1997).ADSGoogle Scholar
  7. 7.
    N. N. Volodichev and B. M. Kuzhevskii, Cosmic Res. 41, 123 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    N. N. Volodichev, Bull. Russ. Acad. Sci.: Phys. 71, 1051 (2007).CrossRefGoogle Scholar
  9. 9.
    V. P. Antonova, N. N. Volodichev, S. V. Kryukov, A. P. Chubenko, and A. L. Shchepetov, Bull. Russ. Acad. Sci.: Phys. 71, 1054 (2007).CrossRefGoogle Scholar
  10. 10.
    N. N. Volodichev and B. W. Levin, Moscow Univ. Phys. Bull. 67, 116 (2012). https://doi.org/10.3103/S0027134912010250ADSCrossRefGoogle Scholar
  11. 11.
    N. N. Volodichev, O. Yu. Nechaev, and E. A. Sigaeva, Moscow Univ. Phys. Bull. 68, 263 (2013). https://doi.org/10.3103/S0027134913030120ADSCrossRefGoogle Scholar
  12. 12.
    General Geophysics, Ed. by V.A. Magnitskii (Mosk. Gos. Univ., Moscow, 1995).Google Scholar
  13. 13.
    P. Melchior, The Earth Tides (Pergamon, 1966).Google Scholar
  14. 14.
    N. N. Volodichev, A. N. Podorol’skii, B. V. Levin, and Vl. A. Podorol’skii, Vulkanol. Seismol., No. 1, 60 (2001).Google Scholar
  15. 15.
    N. N. Volodichev, B. M. Kuzhevskii, O. Yu. Nechaev, M. I. Panasyuk, A. N. Podorol’skii, and P. I. Shavrin, Solar Syst. Res. 34, 173 (2000).ADSGoogle Scholar
  16. 16.
    F. Bo Pedersen, On the History of the Continents: A Story of Plate Tectonics and Earth Tides (LICengineering A/S, Hellerup, 2011).Google Scholar
  17. 17.
    B. W. Levin and V. P. Pavlov, Izv., Phys. Solid Earth 39, 601 (2003).Google Scholar
  18. 18.
    H. E. Coffey, Solar-Geophysical Data 602 (National Geophysical Data Center, Boulder, 1994), Part 1.Google Scholar
  19. 19.
    L. I. Dorman, Variations of Cosmic Rays and Space Research (Akad. Nauk SSSR, Moscow, 1963).Google Scholar
  20. 20.
    L. I. Dorman, Variations of Galactic Cosmic Rays (Mosk. Gos. Univ., Moscow, 1975).Google Scholar
  21. 21.
    Tides and Resonances in the Solar System, Ed. by V. N. Zharkov (Mir, Moscow, 1975).Google Scholar
  22. 22.
    V. V. Alekseenko, D. D. Dzhappuev, V. A. Kozyarivsky, A. U. Kudzhaev, V. V. Kuzminov, O. I. Mikhailova, and Yu. V. Sten’kin, Bull. Russ. Acad. Sci.: Phys. 71, 1047 (2007).CrossRefGoogle Scholar
  23. 23.
    V. V. Alekseenko, Yu. M. Gavrilyuk, D. M. Gromushkin, D. D. Dzhappuev, A. U. Kudzhaev, V. V. Kuzminov, O. I. Mikhailova, Yu. V. Stenkin, and V. I. Stepanov, Izv., Phys. Solid Earth 45, 709 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    A. Raghav et al., J. Geophys. Res. 118, 1 (2013).CrossRefGoogle Scholar
  25. 25.
    A. Raghav et al., J. Astrophys. Space Sci. 335, 347 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations