Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 544–549 | Cite as

The Effect of a Silicon Substrate on the Directivity Pattern of Scattered Radiation of a Gold Nanospheroid and on Near-Field Polarization

  • Yu. V. Vladimirova
  • A. A. Pavlov
  • V. N. Zadkov
Optics and Spectroscopy. Laser Physics


We studied the radiation-directivity pattern and the near-field polarization of a spheroidal metallic nanoparticle located over a silicon substrate by interaction with a linearly and circularly polarized field. It is shown that the directivity pattern of the spheroidal particle near the silicon substrate becomes strongly asymmetric and forward scattering is predominant compared with the symmetric diagram of a particle in free space. The change of the near-field polarization of the nanoparticle in presence of the substrate is studied for different wavelengths in the vicinity of the plasmonic resonance. The near-field polarization is described using the generalized Stokes parameters, which allow pictorial visualization of results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).CrossRefGoogle Scholar
  2. 2.
    O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Rivas Gomez, Nano Lett. 7, 2871 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, Phys. Rev. Lett. 95, 017402 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, Nano Lett. 7, 28 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    E. D. Chubchev, Yu. V. Vladimirova, and V. N. Zadkov, Laser Phys. Lett. 12, 015302 (2015). Scholar
  7. 7.
    E. D. Chubchev, Yu. V. Vladimirova, and V. N. Zadkov, Opt. Express 22, 20432 (2014). Scholar
  8. 8.
    G. V. P. Kumar, J. Nanophotonics 6, 064503 (2012).CrossRefGoogle Scholar
  9. 9.
    A. Sommerfeld, Ann. Phys. 28, 665 (1909).CrossRefGoogle Scholar
  10. 10.
    P. Bobbert and J. Vlieger, Phys. A 137, 209 (1986).CrossRefGoogle Scholar
  11. 11.
    G. Videen, J. Opt. Soc. Am. A 10, 110 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    A. C. Lesina, A. Vaccari, P. Berini, and L. Ramunno, Opt. Express 23, 10481 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).zbMATHGoogle Scholar
  15. 15.
    A. Taflove, S. G. Johnson, and A. Oskooi, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (Artech House, 2013).Google Scholar
  16. 16.
    T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    Yu. V. Vladimirova, E. D. Chubchev, and V. N. Zadkov, Laser Phys. 27, 025901 (2017). Scholar
  18. 18.
    M. Valamanesh, Y. Borensztein, C. Langlois, and E. Lacaze, J. Phys. Chem. C 115, 2914 (2011). doi 10.1021/jp1056495CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • Yu. V. Vladimirova
    • 1
    • 2
  • A. A. Pavlov
    • 3
    • 4
  • V. N. Zadkov
    • 1
    • 2
    • 5
    • 6
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.International Laser CenterMoscow State UniversityMoscowRussia
  3. 3.Dukhov Research Institute of Automatics (VNIIA)MoscowRussia
  4. 4.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  5. 5.Kolmogorov SchoolMoscow State UniversityMoscowRussia
  6. 6.Institute of Spectroscopy Russian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations